Irrigation Scheduling in a Severe Drought Scheduling for Survival Turf Irrigation Performance and Scheduling Webinar Session 5

Presented by Jim Borneman - Ewing Irrigation and Landscape Supply (retired) jborneman@ewingirrigation.com

Dave Fujino - Ph. D. – Director California Center for Urban Horticulture at U.C. Davis

Let's do a quick review of how to calculate an application rate for drip before we get started! Start by measuring the irrigated area with Ewing's 16-point measurement method to determine how many square feet the zone value is irrigating.

	FEET	INCHES
Α	5	6
В	7	
С	8	7
D	10	4
Ε	11	11
F	12	1
G	10	4
Н	9	2
1	9	4
J	7	
К	8	5
L	7	1
м	13	1
Ν	12	
0	13	10
Р	8	5
	154	1

Locate the sum of the sixteen perimeter measurements and you'll find the square footage. Accurate to within about 2%

	Area (square feet)	Sum of 16 perimeter measurements		Area (square feet)	Sum of 16 perimeter measurements	Area (square feet)	Sum of 16 perimeter measurements		Area (square feet)	Sum of 16 perimeter measurements		Area (square feet)	Sum of 16 perimeter measurements
Ļ	295	155						_			-		
	314	160		1,142	305	2,485	450		4,345	595	_	6,811	745
	334	165	\square	1,179	310	2,541	455		4,418	600		6,903	750
	355	170		1,218	315	2,597	460		4,492	605		6,995	755
	376	175		1,257	320	2,653	465		4,566	610		7,088	760
	398	180		1,296	325	2,711	470		4,642	615		7,182	765
	420	185		1,336	330	2,769	475		4,717	620		7,276	770
	443	190		1,377	335	2,827	480		4,794	625		7,371	775
	467	195		1,419	340	2,887	485		4,871	630		7,466	780
	491	200		1,461	345	2,946	490		4,948	635		7,562	785
	516	205		1,503	350	3,007	495		5,027	640		7,659	790
	541	210		1,547	355	3,068	500		5,105	645		7,756	795
	567	215		1,590	360	3,130	505		5,185	650		7,854	800
	594	220		1,635	365	3,192	510		5,265	655		7,952	805

Resident	ial Meter	s 5/8" - 3/	4" - 1"	(METER F				
CFM	GPM	GPH	CFM	GPM	GPH	CFM	GPM	GPH
0.03	0.25	15	0.74	5.50	330	1.40	10.50	630
0.07	0.50	30	0.70	5.25	315	1.44	10.75	645
0.10	0.75	45	0.74	5.50	330	1.47	11.00	660
0.13	1.00	60	0.77	5.75	345	1.50	11.25	675
0.17	1.25	75	0.80	6.00	360	1.54	11.50	690
0.20	1.50	90	0.84	6.25	375	1.57	11.75	705
0.23	1.75	105	0.87	6.50	390	1.60	12.00	720
0.27	2.00	120	0.90	6.75	405	1.64	12.25	735
0.30	2.25	135	0.94	7.00	420	1.67	12.50	750
0.33	2.50	150	0.97	7.25	435	1.70	12.75	765
0.37	2.75	165	1.00	7.50	450	1.74	13.00	780
0.40	3.00	180	1.04	7.75	465	1.77	13.25	795
0.43	3.25	195	1.07	8.00	480	1.80	13.50	810
0.47	3.50	210	1.10	8.25	495	1.84	13.75	825
0.50	3.75	225	1.14	8.50	510	1.87	14.00	840
0.53	4.00	240	1.17	8.75	525	1.91	14.25	855
0.57	4.25	255	1.20	9.00	540	1.94	14.50	870
0.60	4.50	270	1.24	9.25	555	1.97	14.75	885
0.64	4.75	285	1.34	10.00	600	2.01	15.00	900
0.67	5.00	300	1.37	10.25	615	2.04	15.25	915

Next, measure the flow at the water meter. Time the flow for 1 minute after the air has flushed form the system. Each revolution of the needle on a residential meter 5/8'' - 1'' is 1 cubic foot or 7.5 gallons or for drip 450 gph.

Utilize the tables to determine the rates of precipitation. Recall that when dealing with drip, it is often referred toas the rate of application.

	Precipitation	Rate Tables	- Low Vo	olume/Drip-Micro	Irrigation
--	---------------	-------------	----------	------------------	------------

Point Source Emiiters or Micro Spray

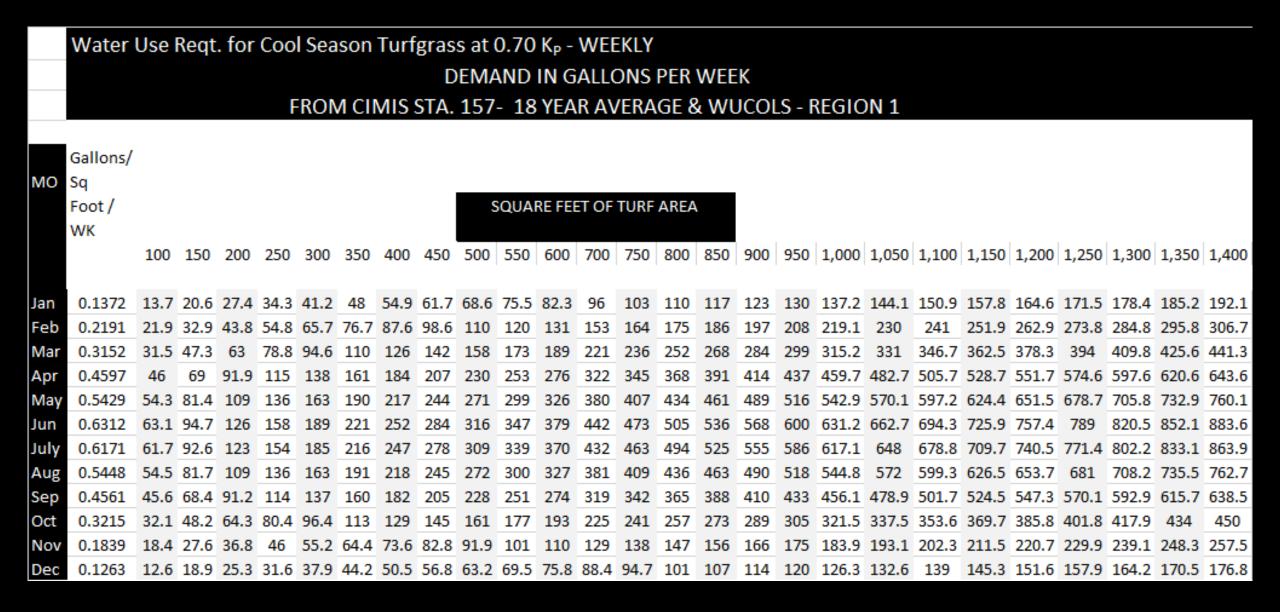
(METER FLOW)

CFM GPM

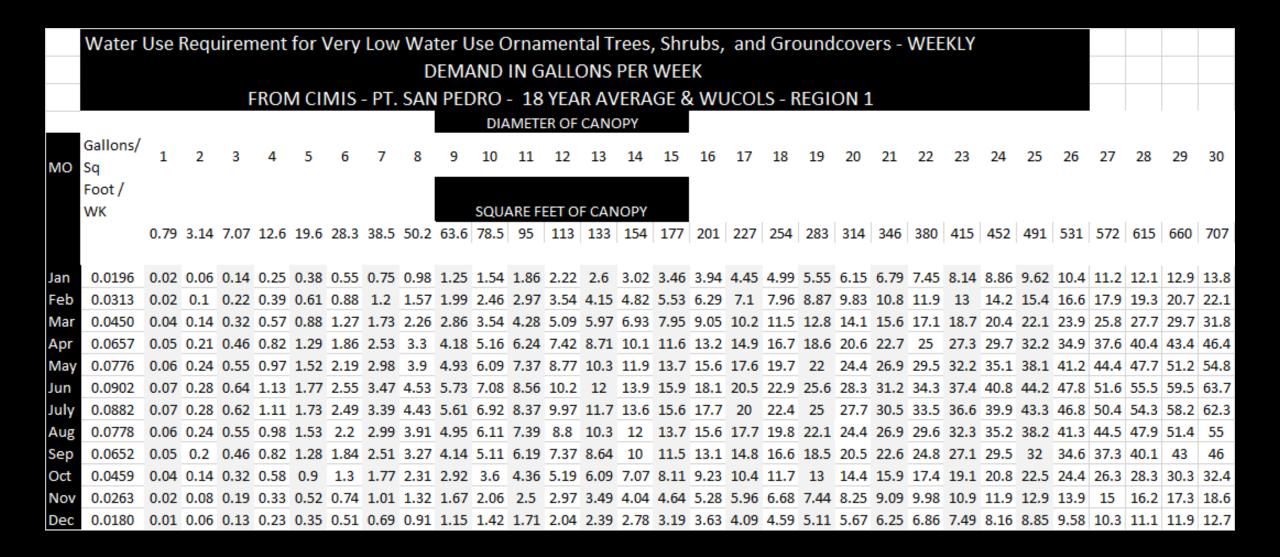
AREA IN SQUARE FEET(CANOPY AREA)

50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500 525 550 575 600 625 650 675 700 725 750 775 800

0.03 0.25 ## 0.32 0.24 0.19 0.16 0.14 0.12 0.11 0.10 0.09 0.08

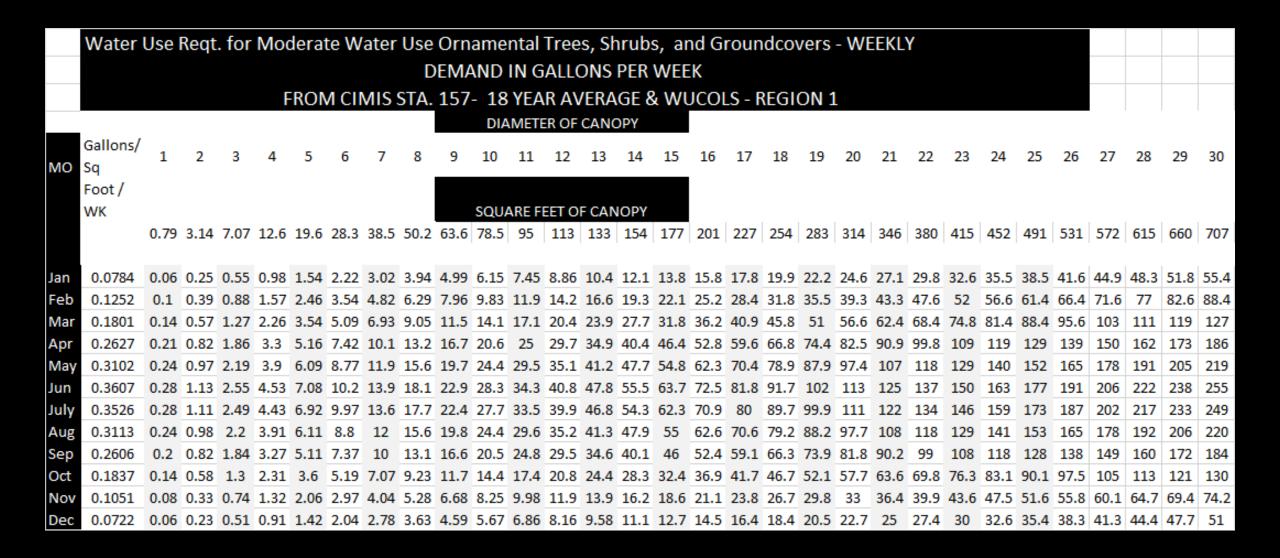

0.07 0.50 ## 0.64 0.48 0.39 0.32 0.28 0.24 0.21 0.19 0.18 0.16 0.15 0.14 0.13 0.12 0.11 0.11 0.10 0.10 0.09 0.09 0.08

0.96 0.72 0.58 0.48 0.41 0.36 0.32 0.29 0.26 0.24 0.22 0.21 0.19 0.18 0.17 0.16 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.11 0.11 0.10 0.10 0.10 0.09 0.09 0.10 0.75 0.13 1.00 ## 1.28 0.96 0.77 0.64 0.55 0.48 0.43 0.39 0.35 0.32 0.30 0.28 0.26 0.24 0.23 0.21 0.20 0.19 0.18 0.18 0.17 0.16 0.15 0.15 0.14 0.14 0.13 0.13 0.12 0.12 0.17 1.25 ## 1.61 1.20 0.96 0.80 0.69 0.60 0.54 0.48 0.44 0.40 0.37 0.34 0.32 0.30 0.28 0.27 0.25 0.24 0.23 0.22 0.21 0.20 0.19 0.19 0.18 0.17 0.17 0.16 0.16 0.15 0.20 1.50 ## 1.93 1.44 1.16 0.96 0.83 0.72 0.64 0.58 0.53 0.48 0.44 0.41 0.39 0.36 0.34 0.32 0.30 0.29 0.28 0.26 0.25 0.24 0.23 0.22 0.21 0.21 0.21 0.20 0.19 0.19 0.18 0.231.75 ## 2.25 1.69 1.35 1.12 0.96 0.84 0.75 0.67 0.61 0.56 0.52 0.48 0.45 0.42 0.40 0.37 0.35 0.34 0.32 0.31 0.29 0.28 0.27 0.26 0.25 0.24 0.23 0.22 0.22 0.21 2.00 ## 2.57 1.93 1.54 1.28 1.10 0.96 0.86 0.77 0.70 0.64 0.59 0.55 0.51 0.48 0.45 0.43 0.41 0.39 0.37 0.35 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.26 0.25 0.24 0.27 0.30 2.25 ## 2.89 2.17 1.73 1.44 1.24 1.08 0.96 0.87 0.79 0.72 0.67 0.62 0.58 0.54 0.51 0.48 0.46 0.43 0.41 0.39 0.38 0.36 0.35 0.33 0.32 0.31 0.30 0.29 0.28 0.27 0.33 2.50 ## 3.21 2.41 1.93 1.61 1.38 1.20 1.07 0.96 0.88 0.80 0.74 0.69 0.64 0.60 0.57 0.54 0.51 0.48 0.46 0.44 0.42 0.40 0.39 0.37 0.36 0.34 0.33 0.32 0.31 0.30 0.37 2.75 ## 3.53 2.65 2.12 1.77 1.51 1.32 1.18 1.06 0.96 0.88 0.81 0.76 0.71 0.66 0.62 0.59 0.56 0.53 0.50 0.48 0.46 0.44 0.42 0.41 0.39 0.38 0.37 0.35 0.34 0.33 3.00 ## 3.85 2.89 2.31 1.93 1.65 1.44 1.28 1.16 1.05 0.96 0.89 0.83 0.77 0.72 0.68 0.64 0.61 0.58 0.55 0.53 0.50 0.48 0.46 0.40 0.44 0.43 0.41 0.40 0.39 0.37 0.36 3.25 ## 4.17 3.13 2.50 2.09 1.79 1.56 1.39 1.25 1.14 1.04 0.96 0.89 0.83 0.78 0.74 0.70 0.66 0.63 0.60 0.57 0.54 0.52 0.50 0.48 0.46 0.45 0.43 0.42 0.40 0.39 0.43 3.50 ## 4.49 3.37 2.70 2.25 1.93 1.69 1.50 1.35 1.23 1.12 1.04 0.96 0.90 0.84 0.79 0.75 0.71 0.67 0.64 0.61 0.59 0.56 0.54 0.52 0.50 0.48 0.46 0.45 0.43 0.42 0.47 ## 4.82 3.61 2.89 2.41 2.06 1.81 1.61 1.44 1.31 1.20 1.11 1.03 0.96 0.90 0.85 0.80 0.76 0.72 0.69 0.66 0.63 0.60 0.58 0.56 0.54 0.52 0.50 0.48 0.47 0.45 0.50 3.75 0.53 ## 5.14 3.85 3.08 2.57 2.20 1.93 1.71 1.54 1.40 1.28 1.19 1.10 1.03 0.96 0.91 0.86 0.81 0.77 0.73 0.70 0.67 0.64 0.62 0.59 0.57 0.55 0.53 0.51 0.50 0.48 4.00 0.57 4.25 ## 5.46 4.09 3.27 2.73 2.34 2.05 1.82 1.64 1.49 1.36 1.26 1.17 1.09 1.02 0.96 0.91 0.86 0.82 0.78 0.74 0.71 0.68 0.65 0.63 0.61 0.58 0.56 0.55 0.53 0.51 ## 5.78 4.33 3.47 2.89 2.48 2.17 1.93 1.73 1.58 1.44 1.33 1.24 1.16 1.08 1.02 0.96 0.91 0.87 0.83 0.79 0.75 0.72 0.69 0.67 0.64 0.62 0.60 0.58 0.56 0.54 0.60 4.50 0.64 4.75 ## 6.10 4.57 3.66 3.05 2.61 2.29 2.03 1.83 1.66 1.52 1.41 1.31 1.22 1.14 1.08 1.02 0.96 0.91 0.87 0.83 0.80 0.76 0.73 0.70 0.68 0.65 0.63 0.61 0.59 0.57 ## 6.42 4.82 3.85 3.21 2.75 2.41 2.14 1.93 1.75 1.61 1.48 1.38 1.28 1.20 1.13 1.07 1.01 0.96 0.92 0.88 0.84 0.80 0.77 0.74 0.71 0.69 0.66 0.64 0.62 0.60 0.67 5.00


The following tables indicate the water use in gallons per square foot per week for each month of the year. Locate the chart for the water use category (very low, low, or moderate) and then the canopy area. The first table indicates water use for cool season turfgrass

These charts serve as a "benchmark" to evaluate water use.

Water Use Requirement (Weekly) in gallons – Cool Season Turfgrass


WUCOLS – Very low water use category

WUCOLS – Low water use category

	Water Use Requirement for Low Water Use Ornamental Trees, Shrubs, and Groundcovers - WEEKLY																													
	DEMAND IN GALLONS PER WEEK																													
	FROM CIMIS STA. 157- 18 YEAR AVERAGE & WUCOLS - REGION 1																													
	DIAMETER OF CANOPY											-																		
мо	Gallons/ Sq	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29
	Foot / WK										SQUA				_															
		0.79	3.14	7.07	12.6	19.6	28.3	38.5	50.2	63.6	78.5	95	113	133	154	177	201	227	254	283	314	346	380	415	452	491	531	572	615	660
Jan	0.0392	0.03	0.12	0.28	0.49	0.77	1.11	1.51	1.97	2.49	3.08	3.72	4.43	5.2	6.03	6.92	7.88	8.89	9.97	11.1	12.3	13.6	14.9	16.3	17.7	19.2	20.8	22.4	24.1	25.9 2
Feb	0.0626	0.05	0.2	0.44	0.79	1.23	1.77	2.41	3.14	3.98	4.91	5.95	7.08	8.3	9.63	11.1	12.6	14.2	15.9	17.7	19.7	21.7	23.8	26	28.3	30.7	33.2	35.8	38.5	41.3 4
Mar	0.0901	0.07	0.28	0.64	1.13	1.77	2.55	3.46	4.52	5.73	7.07	8.55	10.2	11.9	13.9	15.9	18.1	20.4	22.9	25.5	28.3	31.2	34.2	37.4	40.7	44.2	47.8	51.5	55.4	59.5 6
Apr	0.1313	0.1	0.41	0.93	1.65	2.58	3.71	5.05	6.6	8.35	10.3	12.5	14.8	17.4	20.2	23.2	26.4	29.8	33.4	37.2	41.2	45.5	49.9	54.5	59.4	64.4	69.7	75.2	80.8	86.7 9
May	0.1551	0.12	0.49	1.1	1.95	3.04	4.38	5.97	7.79	9.86	12.2	14.7	17.5	20.6	23.9	27.4	31.2	35.2	39.5	44	48.7	53.7	58.9	64.4	70.1	76.1	82.3	88.8	95.5	102 1
Jun	0.1803	0.14	0.57	1.27	2.27	3.54	5.1	6.94	9.06	11.5	14.2	17.1	20.4	23.9	27.7	31.9	36.2	40.9	45.9	51.1	56.6	62.4	68.5	74.9	81.5	88.5	95.7	103	111	119 1
July	0.1763	0.14	0.55	1.25	2.21	3.46	4.98	6.78	8.86	11.2	13.8	16.7	19.9	23.4	27.1	31.1	35.4	40	44.8	50	55.4	61	67	73.2	79.7	86.5	93.6	101	109	116 1
Aug	0.1557	0.12	0.49	1.1	1.95	3.05	4.4	5.99	7.82	9.9	12.2	14.8	17.6	20.6	23.9	27.5	31.3	35.3	39.6	44.1	48.9	53.9	59.1	64.6	70.4	76.4	82.6	89.1	95.8	103 1
Sep	0.1303	0.1	0.41	0.92	1.64	2.56	3.68	5.01	6.55	8.29	10.2	12.4	14.7	17.3	20	23	26.2	29.6	33.1	36.9	40.9	45.1	49.5	54.1	58.9	63.9	69.2	74.6	80.2	86 9
Oct	0.0918	0.07	0.29	0.65	1.15	1.8	2.6	3.53	4.61	5.84	7.21	8.72	10.4	12.2	14.1	16.2	18.5	20.8	23.4	26	28.8	31.8	34.9	38.1	41.5	45.1	48.7	52.6	56.5	60.6
Nov	0.0525	0.04	0.16	0.37	0.66	1.03	1.48	2.02	2.64	3.34	4.12	4.99	5.94	6.97	8.08	9.28	10.6	11.9	13.4	14.9	16.5	18.2	20	21.8	23.8	25.8	27.9	30.1	32.3	34.7 3
Dec	0.0361	0.03	0.11	0.25	0.45	0.71	1.02	1.39	1.81	2.29	2.83	3.43	4.08	4.79	5.55	6.37	7.25	8.19	9.18	10.2	11.3	12.5	13.7	15	16.3	17.7	19.2	20.7	22.2	23.8 2

WUCOLS – Moderate water use category

The Situation – The intent of the workshops was to address some of the more serious irrigation challenges you now face with restrictive watering guidelines and to offer solutions. The reality is that with the solutions we have offered, you will have irrigation problems you have not previously encountered!

Designated Watering Day by City for Overhead Irrigation

Monday	Tuesday	Wednesday	Thursday	Friday
 Ross 	 San Rafael 	 San Quentin 	 Mill Valley 	• Woodacre
Tiburon	All other	 Sausalito 		 Larkspur
 Belvedere 	unincorporated areas in Marin	 Corte Madera 		• Fairfax
• San	County	 San Anselmo 		 Greenbrae
Geronimo				Kentfield
 Forest Knolls 				
 Lagunitas 				

No overhead irrigation is allowed on Saturdays and Sundays and no watering between the hours of 9:00 a.m. and 7:00 p.m.!

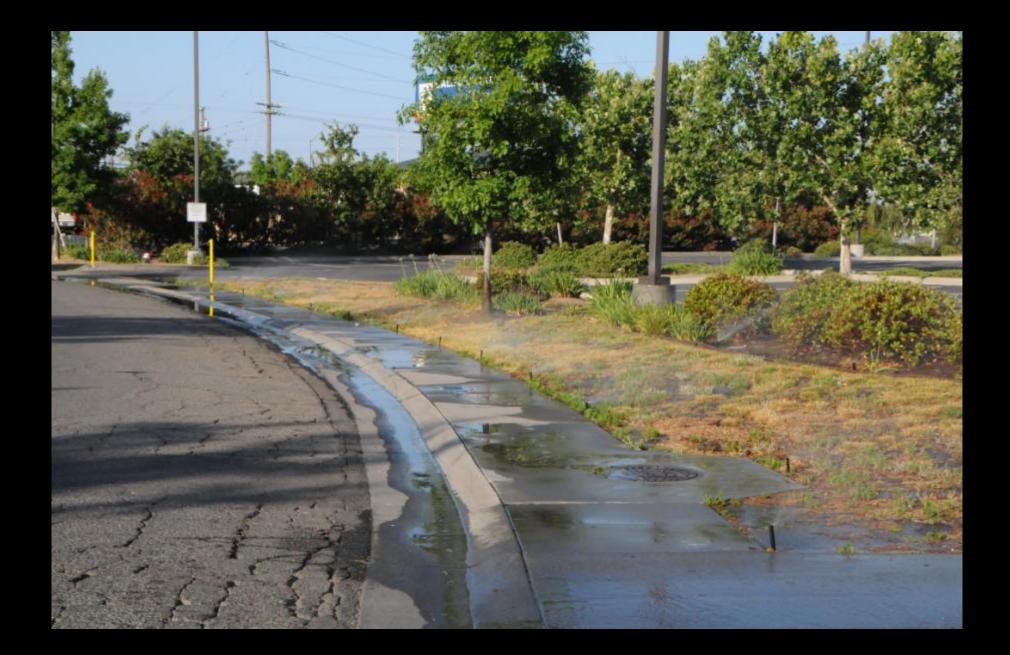
The One Thing -

The irrigation systems you managed and those you have installed were never intended to water within such a narrow watering window.

There will be hydraulic limitations that prevent you from Implementing the scheduling we have proposed. Also, the continuous cycling to avoid runoff will introduce new problems. Three learning Objectives Today!

At the completion of this objective, the participant will understand how to spot problems with low sprinkler head drainage, how to measure the potential loss and renovation techniques to resolve the problem.

At the completion of this learning objective, the participants will understand how to determine the maximum water that may be delivered and balance that to the square footage of the irrigated landscape.


At the conclusion of this webinar the participant will learn how to create a temporary drip system for turf areas which will significantly improve the Irrigation efficiency and allow twice weekly watering.

Let's get started!

At the completion of this objective, the participant will understand how to spot problems with low sprinkler head drainage, how to measure the potential loss and renovation techniques to resolve the problem. The recommendation for multiple cycling of overhead sprinklers to avoid runoff will create problems with drainage out of low sprinkler heads!

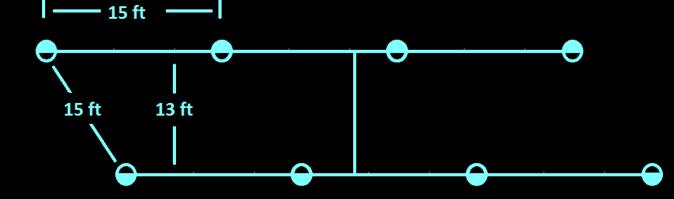
What does runoff look like?

Irrigation runoff can occur on what seems to be "flat" surfaces!

So we know what runoff is, then how is it traditionally controlled.

By shutting irrigation water off when the intake rate of the soil has been exceeded and letting a "soak" occur, then watering multiple repeat cycles.

Infiltration Rates	iltration Rates by Soil Texture Class									
	Available									
	water Infiltration									
Soil Texture	in/in	in/hr								
Fine										
Sandy clay	0.12	0.08 - 0.20								
Silty clay	0.15	0.05 - 0.15								
Clay	0.14	0.05 - 0.10								


Soils with a high clay content have a low intake rate. Turf growing in clay textured soil that is flat can take in water at a rate between 0.05 and 0.10 inches / hr How soon during an irrigation cycle does runoff occur on clay soil (flat surface)?

Answer – It depends on the sprinklers!!!

We must know the precipitation rate of the sprinklers

15 Series MPR									
30° Traject	tory			•	A				
Nozzle	Pressure psi	Radius ft.	Flow GPM	Precip In/h	Precip In/h				
15F	15	11	2.60	2.07	2.39				
	20	12	3.00	2.01	2.32				
	25	14	3.30	1.62	1.87				
	30	15	3.70	1.58	1.83				
15 <mark>H</mark>	15	11	1.30	2.07	2.39				
	20	12	1.50	2.01	2.32				
Ť	25	14	1.65	1.62	1.87				
	30	15	1.85	1.58	1.83				

At 30 psi and triangular spacing the 15 ft spray has a 1.83" / hr precip. Rate.

We can calculate the maximum run time on clay in minutes as follows...

IR (infiltration rate)x 60 (constant) = max minutesPR (precip rate)run time

 $\frac{0.10}{1.83}$ = 0.055 hrs x 60 = 3.28 min or 4 min

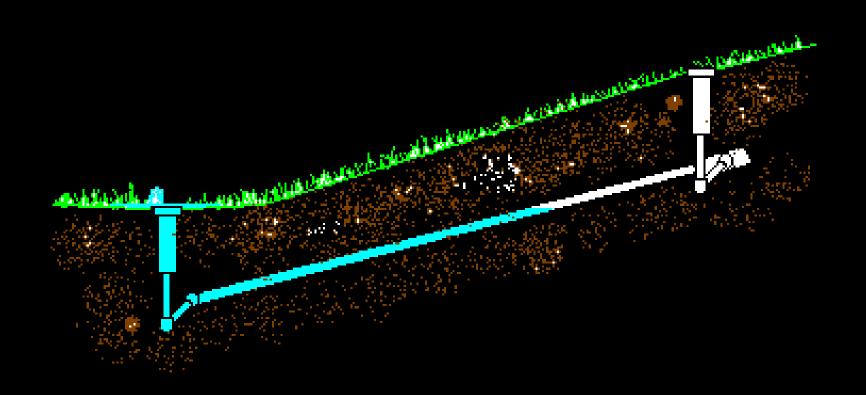
4 minutes

We must know the precipitation rate of the sprinklers

15 Series MPR									
30° Traject	ory								
Nozzle	Pressure psi	Radius ft.	Flow GPM	Precip In/h	Precip In/h				
15F	15	11	2.60	2.07	2.39				
	20	12	3.00	2.01	2.32				
	25	14	3.30	1.62	1.87				
	30	15	3.70	1.58	1.83				
15H	15	11	1.30	2.07	2.39				
	20	12	1.50	2.01	2.32				
Ŭ	25	14	1.65	1.62	1.87				
	30	15	1.85	1.58	1.83				

At 30 psi and square spacing the 15 ft spray has a 1.58" / hr precip. rate We can calculate the maximum run time on clay in minutes as follows...

IR (infiltration rate)x 60 (constant) = max minutesPR (precip rate)run time


 $\frac{0.10}{1.58}$ = 0.063 hrs x 60 = 3.79 min or 4 min

4 minutes

The problem in Marin is that in the peak months, eight, four-minute cycle may not be enough water with lower precip. rate sprays or the controller may not offer enough repeats so we <u>may have to push to five minutes</u> on clay soils.

In months of lower irrigation demand, drop maximum cycle length to 4 minutes on clay soils when using sprays!

Multiple cycling to avoid runoff causes water waste when water drains out the sprinkler heads after each automatic cycle

The elevation difference in the laterals can create water pressure that causes drainage out the lowest heads

This water that is running off the landscape could also be polluted with chemicals applied to the landscape

There is a slight rise in pressure, due to the elevation difference which approximately 1 - 2 psi in this case.

And aside from the hazard to our waterways, significant damage can be caused to the hardscape

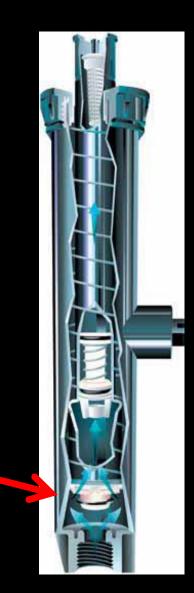
And there is a way to calculate the volume of water that is being lost

The morning after the irrigation cycle, proceed to the water meter and take a reading or a picture with your phone.

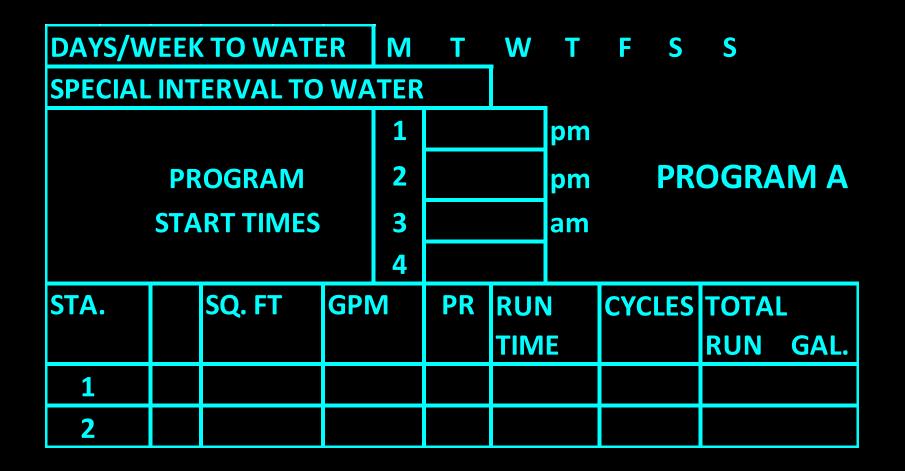
Proceed to the valve box controlling the area and bleed the valve manually. Let it run until all the air bleed out, then shut if off immediately.

A fair amount of air will escape from the sprinkler nozzles,. As soon as the circuit comes to pressure, shut the valve off. Return and read the meter.


The loss here is 7.4 cubic feet or 55 gallons (7.48 x 7.4). Each night with five cycles 275 gallons is lost. In 5 years the loss on this valve would be 137,000 gallons!!!

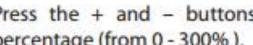

The solution...

Low head drainage solution... (check valves in the base of all sprinklers)



check valve to prevent low head drainage *(use for retrofits & mandatory for new projects)*

But remember, multiple cycling to avoid runoff disables the seasonal adjust feature Here's what you can do about it! The ideal number of cycle starts in August in the Marin area to avoid runoff on clay with spray heads is 8 starts which would typically require the use of two programs.



Controller limitation!!! – The % or Water budget key becomes a meaningless feature with sprays when the run time is reduced to 4 minutes!

The Seasonal Adjust screen appears with Individual PGM selected; press Next.

Press the + and - buttons to set the seasonal adjustment percentage (from 0 - 300%).

It's a math problem most controllers can't resolve

Most controllers water in even 1 minute increments. Let's assume a valve has a 4 minute run time so a reduction of one minute (from 4 to 3 minutes) is a 25% change in water applied

A -10% water budget adjustment on a 4 minute spray head run time does not change water time! Punch the buttons all you want, nothing happens!!! The best way to change total run time is to reduce total watering by eliminating a start time.

WATERING SCHEDULE FORM EXAMPLE.

			PF	OGR	AM /	4		PROGRAM B							PROGRAM C							
DAY OF THE WEEK			M 1	· N	T	F	S	S S	M	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S
ODD/	ODD/ EVEN or INTERVAL																					
	1				Start 1 – 12:30 am						Start 1 – 6:00 am											
	PROGRAM 2			Start 2 – 2:00 am					Start 2 – 9:00 pm													
S.	START TIMES 3		Start 3– 3:30 am					Start 3 – 10:00 pm														
	4			Start 4 – 5:00 am						Start 4 – 11:00 pm												
STATION	LOCATIO	STATION RUN TIME					STATION RUN TIME					STATION RUN TIME										
1				4 min					4 min													
2	4	x 4 i	nin	n = 16 min 4						4 cycle x 3 min =					16 min							

The best way to change total run time is to reduce total watering by eliminating a start time.

WATERING SCHEDULE FORM EXAMPLE.

			PI	ROGF	AM	A			PROGRAM B							PROGRAM C							
DAY OF THE WEEK			M	гΙ۷	У Т	F		S :	S	Μ	Т	W	Т	F	S	S	Μ	Т	W	Т	F	S	S
ODD/	ODD/ EVEN or INTERVAL							_										-	-	-			
	1				Start 1 – 12:30 am					Start 1 – 6:00 am													
	PROGRAM 2 Start times 3 4			Start 2 – 2:00 am						Start 2 – 9:00 pm													
S				Start 3– 3:30 am						Start 3 – 10:00 pm													
				Start 4 – 5:00 am																			
STATION	LOCATIO	STATION RUN TIME						STATION RUN TIME						STATION RUN TIME									
1		4 min						4 min															
2	4 cycle x 4 m				ן = נ	16	m	in		3 cycle x 4 min =							12	? m	in				

By reducing start times from 8 to 7 cycles, the overall total run time on Tuesday is reduced from 32 minutes to 28 which is a 10% reduction!

So, with sprays (4 min max. run) the % key is disabled

Instead adjust total run times by reducing start times.

The final problem is not created by cycling but in water conserving scheduling is often overlooked

Runoff that occurs with drip/low volume irrigation

Runoff after 5 minutes on clay soils with "line source" drip

Run off from point source drip in Chandler, AZ

Dying plant material and damaged hardscape due to drip runoff — University of Nevada

Once again, match clay soil intake rates of 0.10" / hr to the precipitation rate of the drip Maximum run times for various sprinkler types on flat clay surfaces with vegetation. We are stretching to 5 min. due to irrigation controller flexibility issues.

Another issue is the tendency to complete watering sooner by activating multiple valves which drops pressure.

Learning Objective 2

At the completion of this learning objective, the participants will understand how to determine the maximum water that may be delivered and balance that to the square footage of the irrigated landscape. Water meters have a maximum capacity for flow, which, when exceeded, can damage the meter and cause excessive pressure loss which hurts sprinkler performance.

Want more information on how to read a meter

Visit "you tube" as there are many videos to be found

The following charts allow a quick conversion of cubic feet to gallons per minute or gallons per hour.

This chart converts cubic feet for residential meters (5/8", ³/₄", and 1" where each full revolution of the meter needle is 1 cubic foot (7.48 gallons)

Resident	ial Meter	s 5/8" - 3/	4" - 1"	(METER F				
CFM	GPM	GPH	CFM	GPM	GPH	CFM	GPM	GPH
0.03	0.25	15	0.74	5.50	330	1.40	10.50	630
0.07	0.50	30	0.70	5.25	315	1.44	10.75	645
0.10	0.75	45	0.74	5.50	330	1.47	11.00	660
0.13	1.00	60	0.77	5.75	345	1.50	11.25	675
0.17	1.25	75	0.80	6.00	360	1.54	11.50	690
0.20	1.50	90	0.84	6.25	375	1.57	11.75	705
0.23	1.75	105	0.87	6.50	390	1.60	12.00	720
0.27	2.00	120	0.90	6.75	405	1.64	12.25	735
0.30	2.25	135	0.94	7.00	420	1.67	12.50	750
0.33	2.50	150	0.97	7.25	435	1.70	12.75	765
0.37	2.75	165	1.00	7.50	450	1.74	13.00	780
0.40	3.00	180	1.04	7.75	465	1.77	13.25	795
0.43	3.25	195	1.07	8.00	480	1.80	13.50	810
0.47	3.50	210	1.10	8.25	495	1.84	13.75	825
0.50	3.75	225	1.14	8.50	510	1.87	14.00	840
0.53	4.00	240	1.17	8.75	525	1.91	14.25	855
0.57	4.25	255	1.20	9.00	540	1.94	14.50	870
0.60	4.50	270	1.24	9.25	555	1.97	14.75	885
0.64	4.75	285	1.34	10.00	600	2.01	15.00	900
0.67	5.00	300	1.37	10.25	615	2.04	15.25	915

This chart converts cubic feet for commercial meters (1 ½" and larger) where each full revolution of the meter needle is 10 cubic feett (74.8 gallons)

Commerc	ial Mete	rs - 1 1/2 " -	2"		(METER F	(METER FLOW CONVERSION CHART)					
CFM	GPM	GPH		CFM	GPM	GPH					
0.010	0.75	45		0.210	15.72	943					
0.020	1.50	90		0.220	16.47	988					
0.030	2.25	135		0.230	17.22	1033					
0.040	2.99	180		0.240	17.96	1078					
0.050	3.74	225		0.250	18.71	1123					
0.060	4.49	269		0.260	19.46	1168					
0.070	5.24	314		0.270	20.21	1213					
0.080	5.99	359		0.280	20.96	1257					
0.090	6.74	404		0.290	21.71	1302					
0.100	7.49	449		0.300	22.46	1347					
0.110	8.23	494		0.310	23.20	1392					
0.120	8.98	539		0.320	23.95	1437					
0.130	9.73	584		0.330	24.70	1482					
0.140	10.48	629		0.340	25.45	1527					
0.150	11.23	674		0.350	26.20	1572					
0.160	11.98	719		0.360	26.95	1617					
0.170	12.72	763		0.370	27.69	1662					
0.180	13.47	808		0.380	28.44	1707					
0.190	14.22	853		0.390	29.19	1751					
0.200	14.97	898		0.400	29.94	1796					

Water meters are also rated for a maximum flow by the AWWA

5/8"	15	These flows are the maximum
3/4"	22	safe flows regardless of the
1"	37	level of water pressure
1 ^{1/2"}	75	
2"	120	
3"	225	

Remember that just as the irrigation controller can have limitations so too with the water meter!

When most irrigation systems were designed it was thought they would water 3 to 5 days per week! There is a physical limitation to the water that can be delivered to the landscape in a 1 day per week watering restriction!

> Watering one day per week at 12 hrs per day would equal 720 minutes of water time! (60 x 12 = 720)

The gallons of water that can safely be delivered to the site in 720 minutes / week

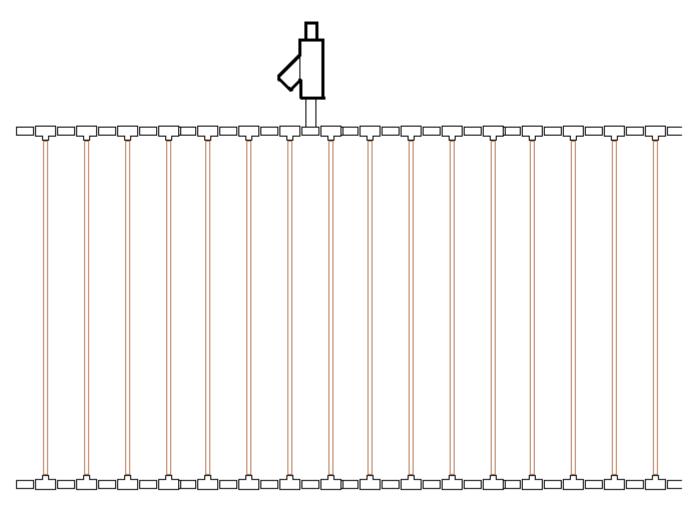
Meter	Max Flow	Deliverable
Size		Water
		12 hrs
5/8"	15	10,800
3/4"	22	15,840
1"	37	26,640
1 1/2"	75	54,000
2"	120	86,400

This maximum amount of water that may be delivered in a week can be compared to a turf water requirement for a week in the month of August

			Maximum
Meter	Max Flow	Deliverable	Turf area
Size		Water	at 75%
		12 hrs	capacity - sq. ft.
5/8"	15	10,800	14,944
3/4"	22	15,840	21,918
1"	37	26,640	36,863
1 1/2"	75	54,000	74,722
2"	120	86,400	119,555

Resist the temptation to activate multiple valves, you'll have enough water in 12 hrs.

The problem is the depletion of soils moisture in 6 days, so if you want to water more often, you'll have to convert turf to drip.


At the conclusion of this webinar the participant will learn how to create a temporary drip system for turf areas which will significantly improve the Irrigation efficiency and allow twice weekly watering. Linear drip can be used to irrigate turf but scheduling is critical! You must know the application rate.

	TURF												
TECHLINE CV		CLAY SOIL			LOAM SOIL			SANDY SOIL			COARSE SOII		
EMITTER FLOW	0.26 GPH		0.	4 GP	Н	0.6 GPH			0.9 GPH				
EMITTER SPACING	18″			12"		12″			12"				
LATERAL (ROW) SPACING		20″	22″	12″	14″	18″	12″	14‴	18″	12″	14″	16″	
BURIAL DEPTH	Buryev				throughout the zone from 4"to 6"								
APPLICATION RATE (INCHES/HOUR)	0.19	0.17	0.15	0.64	0.55	0.43	0.98	0.84	0.65	1.48	1.27	1.11	
TIME TO APPLY ¼" OF WATER (MINUTES)		89	97	23	27	35	15	18	23	10	12	13	
Following these maximum spacing guidelines, emitter flow selection can be increa								8					

0.9 GPH flow rate available for areas requiring higher infiltration rates, such

Note: 0.4, 0.6 and 0.9 GPH are nominal flow rates. Actual flow rates used in the calculations are 0.4

Temporary, surface installed linear drip on turf . Hose Fed – 10 gpm max. . Utilize 0.4 gph tubing on a 12" x 12" grid. Application rate is 0.642. Maximum areais 1,500 sq. ft

Irrigate for 90 minutes per week in August!

Let's review and get to questions!

At the completion of this objective, the participant will understand how to spot problems with low sprinkler head drainage, how to measure the potential loss and renovation techniques to resolve the problem.

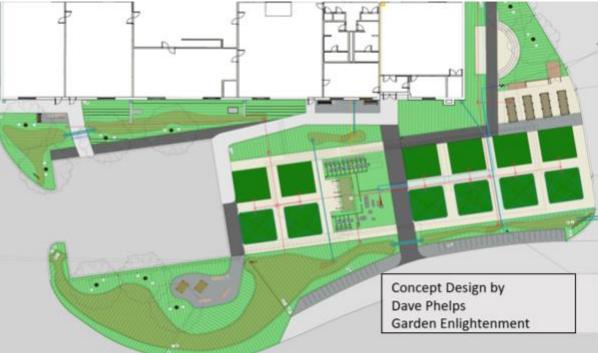
At the completion of this learning objective, the participants will understand how to determine the maximum water that may be delivered and balance that to the square footage of the irrigated landscape.

At the conclusion of this webinar the participant will learn how to create a temporary drip system for turf areas which will significantly improve the Irrigation efficiency and allow twice weekly watering.

The One Thing -

The irrigation systems you managed and those you have installed were never intended to water within such a narrow watering window.

There will be hydraulic limitations that prevent you from Implementing the scheduling we have proposed. Also, the continuous cycling to avoid runoff will introduce new problems.


Dave Fujino - Ph. D. – Director California Center for Urban Horticulture at U.C. Davis

BEFORE: SmartLandscape site at WCAE

Conceptual Design: July 2019

Industry Partners

Individual Partners

Individual Partners

Elizabeth Traynham Estate

Presented by Jim Borneman - Ewing Irrigation and Landscape Supply (retired) jborneman@ewingirrigation.com

