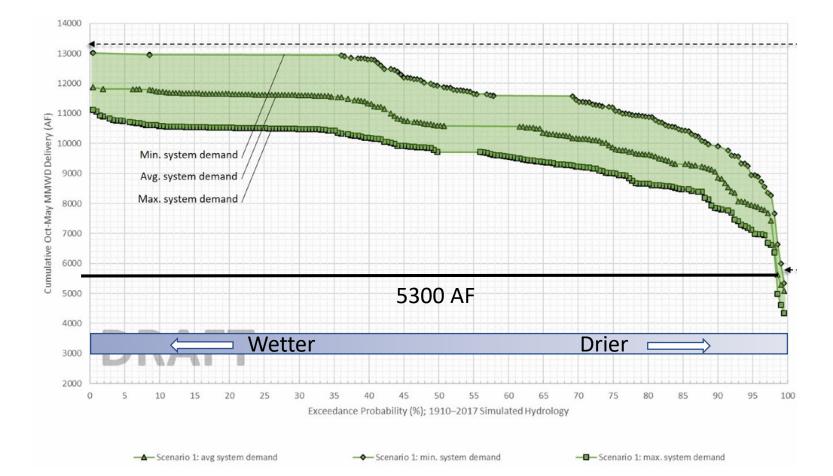


Supplemental Water Supply Options

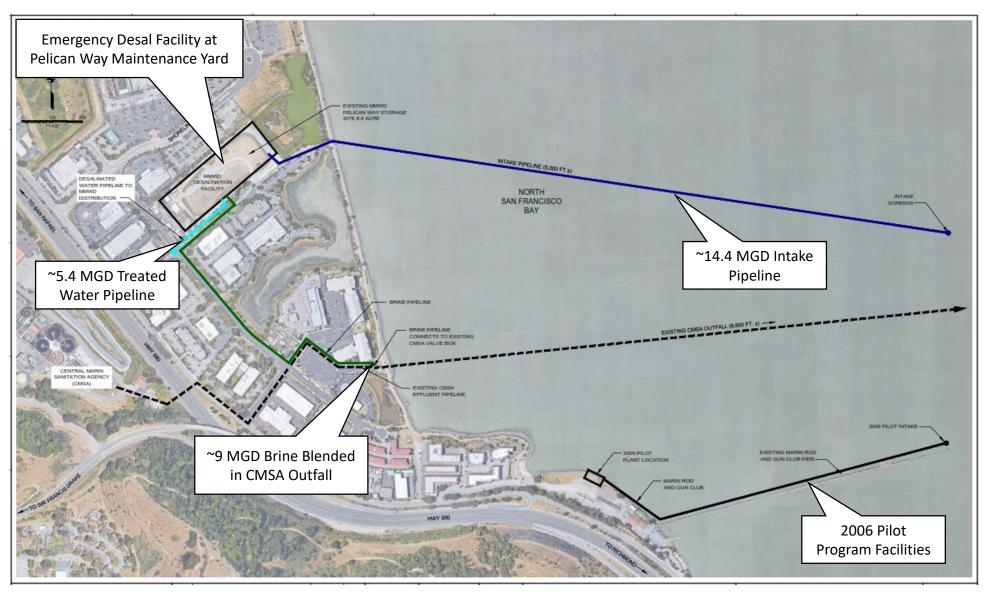
Board Retreat October 15th, 2021

Overview

- Short Term
- Long Term
- Detailed Review of Supplemental Supply Options
- Regional Opportunities
- Next Steps


Short Term Options

✓ Conservation


- Sonoma Winter Water & Ground Water Recharge
- Desalination
- Intertie Project

Sonoma Winter Water

- Intriguing new concept developed by Sonoma Water – excess stream flow Oct - May
- Analysis by Sonoma found opportunities ranging from ~6TAF to 2TAF depending on rainfall
- Next Steps:
 - Regulatory approval
 - Contractor discussions over allocation of water
 - Plan to pursue

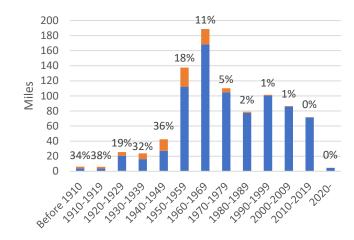
Emergency Desalination Project

Emergency Desalination

- Intake 30-inch HDPE pipe laying on bay floor to 2 intake screens with 1-mm openings mounted to concrete blocks.
 - National Marin Fisheries, US Fish and Wildlife, California Dept of Fish & Wildlife, Coast Guard, Bay Conservation and Development Commission, Army Corps of Engineers, State Lands Commission
- Brine Discharge 1/2 mile of 30-inch HDPE buried pipe
 - Regional Water Quality Control Board, Fishery agencies, City of San Rafael and collaboration with Central Marin Sanitation Agency
- Treatment Skid mounted or containerized systems mounted to concrete pads, piping, electrical and controls to ensure operation
 - State Water Resources Control Board Division of Drinking Water approval of source and final water quality
- Distribution Pump station- Use the same tanks and mobile pump station as for intertie project
- Power PG&E line power is preferred but generator could be a back up until PG&E installation is complete
 - Bay Air Quality Management District permit to operate generators

Emergency Desalination Project

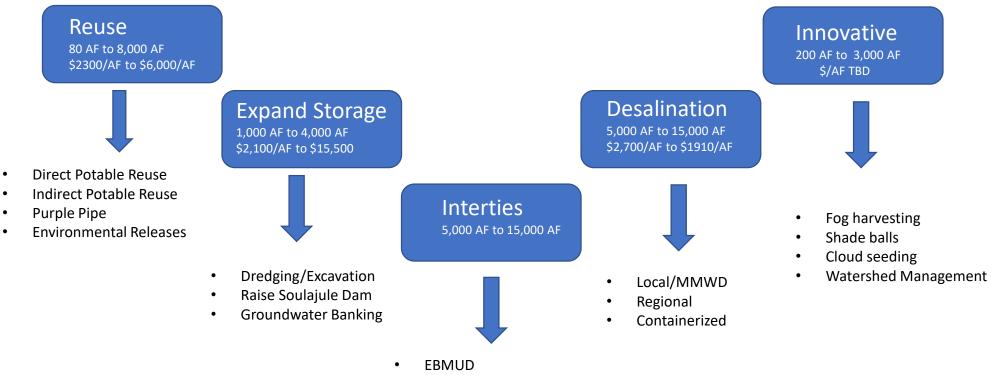
Emergency Intertie Project Alignment


Emergency Intertie Project Update

- ✓ MOU with EBMUD to allow us to conduct engineering studies to finalize approach before developing the wheeling agreement – (Board Authorization October 5)
- ✓ Project Engineering Technical feasibility established and we are pursuing contract amendment for final design of pipe segment on the bridge – (Board Authorization Oct 5).
- California Environmental Quality Act Notice of Exemption (Board Authorization October 19)
- Agreement with Contra Costa Water District to allow conveyance, storage and exchange of transfer water – (Board Authorization October 19)
- Pre-purchase agreements for certain long lead items (Board Authorization October 19)
- Authorization for Purchase of Water *(Board Authorization November 2/17*)
- Agreement with East Bay Municipal Utility District (Board Authorization December 14)

Pre-purchase of Materials - October 19

- Estimated cost range \$18M to \$25M
 - 55,000 ft of pipe \$12M-\$15M
 - Pump stations \$4M \$6M
 - Tanks \$2M \$4M
- Risk Mitigation
 - Analysis indicates 50% of the pipe can be re-purposed for pipe replacement projects:
 - Schedule of manufacturing indicates raw materials ordered 10/21/21, however pipe fab begins Feb 1, 2022
 - Purchase spec includes language for manufacturer to assist District in reselling pipe or using materials
 - Pump stations can be used for emergency response at a number of locations
 - Tanks can be deployed as replacements or retained for emergency response



Summary of Short Term Options

No ideal options exist

- Continued demand management
- Winter water requires adequate precipitation, regulatory approval, collaboration with other contractors and regardless we plan to pursue this option
- Desalination –Temporary facility, complex operation, requires near term commitment to reserve equipment, begin design and pre-purchases to continue as a viable back up option
- Intertie project infrastructure component is progressing very well and a lot of work to be done on water transfers and wheeling
- Discussion tradeoffs in keeping back up projects as viable options

Long Term Water Supply Options

• North bay Aqueduct

Long Term Water Supply Options

- Innovative Concepts
 - Fog Harvesting 1 gal/day/sq meter of mesh pilot study to define yield and cost
 - Shade balls reduces evaporation potential yield ~3600AF, environmental impacts to reservoir ecosystem, visual potential water quality
 - Watershed Management 200 AFY yield, done in conjunction with BFFIP, cost depends on area and rate of thinning.
 - Cloud Seeding 500 AF in dry years

Long Term Water Supply Options

Water Reuse

- Purple Pipe expansion of existing system
- Indirect Potable Reuse (IPR) highly treated water through reservoir
- Direct Potable reuse (DPR) highly treated water directly to customers
- Environmental releases highly treated water to watershed

	IPR			DPR			Purple Pipe			Environmental		
	Yield [AF]	Cost [M]	Cost/AF	Yield [AF]	Cost [M]	Cost/AF	Yield [AF]	Cost [M]	Cost/AF	Yield [AF]	Cost [M]	Cost/AF
SASM	1,600	\$80	\$3,600	1,600	\$63	\$3,100	80	\$5	\$3 <i>,</i> 000			
CMSA	2,300	\$87	\$3,000	2,300	\$70	\$2 <i>,</i> 600	200	\$8.60	\$ <i>,</i> 2800	2,300	\$87	\$3,000
LGVSD	900	\$59	\$5,500	900	\$65	\$5,800	300	\$15	\$4,500			
	AF = acre-feet, 1 acre-foot = 325,851 gallons											
	Costs 2016						\smile					
	Source - Water Resources Plan 2040											

Direct Potable Reuse – 2,200 AF

- Full Advanced Water treatment facility at CMSA
 - UF/RO/UV
 - Engineered buffer 3 x 1-MGD tanks
 - Pump station 170 hp / 1400 gpm
- Pipeline conveyance 5500 ft
- Max production 2-MGD (72% recovery)
- Capital \$45M
- Operating \$3M
- \$2,400/AF

Regional Indirect Potable Re-use – 6,000 AF

- Full Advanced Water Treatment:
 - Ultra Filtration / Reverse Osmosis / UV
 - Pipe 147,780 ft to Kent
 - 4 Pumps 2@ 100 hp / 1@ 830hp / 1@ 4,280hp
- Production 8.8 MGD
- Capital \$359M
- Operating \$7.9M
- \$3,300/AF

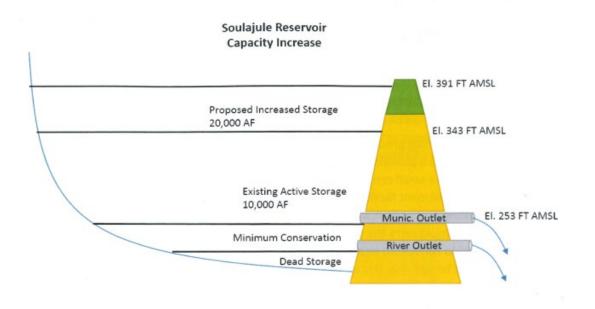
Purple Pipe

Project	Total Offset [AF/Yr.]	Project Cost [M]	Cost/AF/Yr.	
Lucas Valley Ext	21	\$2.7	\$8,095	
Peacock Gap G.C. (Ph 8)	166	\$25.3	\$9,385	
Mt. Tamalpais Cemetery	18	\$2.4	\$8,383	
Circle Rd	8.3	\$1.8	\$13,144	
MMWD/SASM	81	\$3.5	\$3,436	
San Quentin	150	\$9.2	\$4,442	

Environmental Reuse

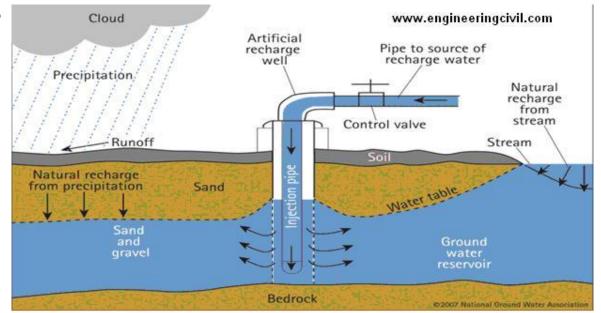
- Full Advanced Water Treatment:
 - Ultra Filtration / Reverse Osmosis / UV
 - Pipe 147,780 ft to Kent
 - 4 Pumps 2@ 100 hp / 1@ 830hp / 1@ 4,280hp
- Production 8.8 MGD
- Capital \$359M
- Operating \$7.9M
- \$3,300/AF

Water Reuse Summary


- Yield is not as much as expected Max IPR is ~8,000 AF (\$350M)
- Costs are significant
- CMSA options preclude local desalination
- IPR would require studies
- DPR not permitted in CA, regulations in development (2023)

Expanding Storage

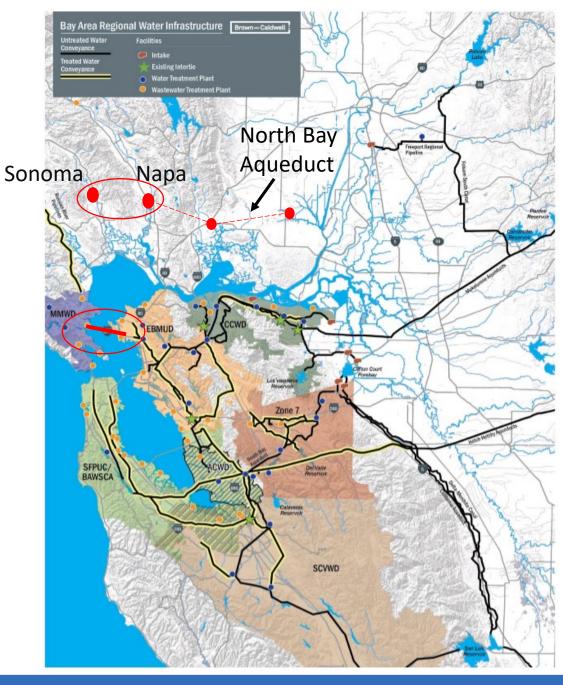
- Excavation or Dredging
 - 1,000 AF capacity = 1.6 million cubic yards \rightarrow ~40,000 truck trips
 - Recent costs for excavation \$45/cubic yard
 - Estimate cost per 1,000 AF of capacity = \$72M
 - Regulatory/environmental approvals for the dredging or excavation work itself
 - Requires new water rights


Expand Storage

- Raise Soulajule Dam
 - Existing capacity = 10,000 AF
 - Raise dam 48 feet
 - New Capacity = 30,000 AF
- Yield affected by
 - Water rights
 - Environmental releases
- Cost \$100M \$150M

Groundwater Storage (Banking)

- Santa Rosa Plain Conjunctive Use
- In wet years MMWD buys extra SCWA water to be used by groundwater agency in lieu of groundwater pumping
- In dry years MMWD has access to the groundwater less some losses
- Requires management of the basin to prevent over drafting
- Capacity of aquifer in wet or normal years to accept recharge is unknown
- SCWA flows may be subject to allocations



Local Desalination Plant

- Capacity 5 to 15 MGD
 - Intake 4500 ft of 48-inch HDPE pipe to 1-mm self cleaning screens
 - Pre-treatment Ultra-filtration membrane system
 - Desalination Reverse osmosis system
 - Treated water disinfection, storage, pump station and pipeline
 - Brine holding tank, pump station and 3500 ft of 30-inch pipeline to CMSA outfall
- Capital Cost
 - 5-MGD = \$152 M / cost per AF = \$2,710
 - 10-MGD = \$192 M / cost per AF = \$2,173
 - 15-MGD = \$222 M / cost per AF = \$1,962
- Annual Operating Cost for 15-MGD Desalination plant =~\$20M
- Schedule to produce water likely greater than 48 months

Interties

- Existing Interties:
 - MMWD Sonoma
 - CCWD East Bay MUD
 - Hayward East Bay Mud
 - Hayward ACWD
 - ACWD Zone 7
 - SFPUC ACWD
 - SFPUC Valley Water
- Proposed Interties:
 - MMWD East Bay MUD
 - CCWD South Bay Aqueduct
- Potential Intertie
 - Sonoma North Bay Aqueduct

Regional Opportunities

- Desalination
- Expansion of Los Vaqueros
- Groundwater Recharge

Only Possible with intertie

Water Supply Projects

What are the Right Criteria for prioritization of supply options?

- Yield Larger projects preferred
- Cost Lower cost projects preferred
- Cost/AF The right small project may be favorable but not really help supply
- Reliability/Resilience *Cost of not doing the project*
- Public Acceptance DPR or IPR

Water Supply Project Prioritization

Project	Priority	Yield	Cost	Cost/AF	Public Acceptance
Intertie	High	9000	\$100	TBD	Yes
DPR	Med	2200	\$45	\$2,400	Unlikely
IPR	High	6000	\$359	\$3,300	Maybe
Purple Pipe	Med	150	\$9.20	\$4,400	Yes
Environmental Releases	Low	6000	\$359	\$3,300	Maybe
Dredging/Excavation	Low	1,000	\$72M	\$7,200	Yes
Raise Soulajule Dam	Low	20,000	\$100M	\$2,100	Maybe
Groundwater Banking	High	900	\$1M	\$1,400	Yes
Regional Desalination	Low	5000	\$75M	\$1,825	Maybe
Local Desal	Low	5000	\$150M	\$2,710	Maybe
Containerized Desal	Low	2000	\$70M	\$3,510	Maybe
Watershed Mangement	High	200	N/A	N/A	Yes
Shade Balls	Med	3600	TBD	TBD	No
Fog Harvesting	Low	10	\$5M	\$25,000	Yes
Cloud Seeding	Low	500	\$0.50	\$7,400	Yes

• Discussion – Long Term Water Supply Priorities

Next Steps

- Continue developing drought projects (EIP/Desal/Winter Water)
- Based on board input further develop action/implementation plan for long term water supply opportunties