

Supplemental Water Supply Options

Webinar

October 21th, 2021

Overview

- Short Term
- Long Term
- Detailed Review of Supplemental Supply Options
- Regional Opportunities
- Next Steps

Summary of Short Term Options

- No ideal options exist
 - Continued demand management
 - Winter water requires adequate precipitation, regulatory approval, collaboration with other contractors and regardless we plan to pursue this option
 - Desalination Temporary facility, complex operation, requires near term commitment to reserve equipment, begin design and pre-purchases to continue as a viable back up option
 - Intertie project infrastructure component is progressing very well and a lot of work to be done on water transfers and wheeling

Long Term Water Supply Options

Reuse

80 AF to 8,000 AF \$2300/AF to \$6,000/AF

- Direct Potable Reuse
- Indirect Potable Reuse
- Purple Pipe
- Environmental Releases
- Satellite/scalping plants
- Onsite reuse

Expand Storage

1,000 AF to 4,000 AF \$2,100/AF to \$15,500

- Dredging/Excavation
- Raise Soulajule Dam
- Groundwater Banking

Interties

5,000 AF to 15,000 AF

- EBMUD
- North bay Aqueduct

Innovative

200 AF to 3,000 AF \$/AF TBD

- Local/MMWD
- Regional
- Containerized

- Fog harvesting
- Shade balls
- Cloud seeding
- Watershed Management

Long Term Water Supply Options

- Innovative Concepts
 - Fog Harvesting 1 gal/day/sq meter of mesh pilot study to define yield and cost
 - Shade balls reduces evaporation potential yield ~3600AF, environmental impacts to reservoir ecosystem, visual potential water quality
 - Watershed Management 200 AFY yield, done in conjunction with BFFIP, cost depends on area and rate of thinning.
 - Cloud Seeding 500 AF in dry years

Long Term Water Supply Options

- Water Reuse
 - Purple Pipe expansion of existing system
 - Indirect Potable Reuse (IPR) highly treated water through reservoir
 - Direct Potable reuse (DPR) highly treated water directly to customers
 - Environmental releases highly treated water to watershed

		IPR			DPR			Purple Pipe	!	En	vironment	:al
	Yield [AF]	Cost [M]	Cost/AF	Yield [AF]	Cost [M]	Cost/AF/	Yield [AF]	Cost [M]	Cost/AF	Yield [AF]	Cost [M]	Cost/AF
SASM	1,600	\$80	\$3,600	1,600	\$63	\$3,100	80	\$5	\$3,000			
CMSA	2,300	\$87	\$3,000	2,300	\$70	\$2,600	200	\$8.60	\$,2800	2,300	\$87	\$3,000
LGVSD	900	\$59	\$5,500	900	\$65	\$5,800	300	\$15	\$4,500			
	AF = acre-feet, 1 acre-foot = 325,851 gallons											
	Costs 2016											

Source - Water Resources Plan 2040

Direct Potable Reuse – 2,200 AF

- Full Advanced Water treatment facility at CMSA
 - UF/RO/UV
 - Engineered buffer 3 x 1-MGD tanks
- Pipeline conveyance 5500 ft
- Max production 2-MGD (72% recovery)
- Capital \$45M
- Operating \$3M
- \$2,400/AF

Regional Indirect Potable Re-use – 6,000 AF

- Full Advanced Water Treatment:
 - Ultra Filtration / Reverse Osmosis / UV
- Production 8.8 MGD
- Capital \$359M
- Operating \$7.9M
- \$3,300/AF

Purple Pipe

Project	Total Offset [AF/Yr.]	Project Cost [M]	Cost/AF/Yr.
Lucas Valley Ext	21	\$2.7	\$8,095
Peacock Gap G.C. (Ph 8)	166	\$25.3	\$9,385
Mt. Tamalpais Cemetery	18	\$2.4	\$8,383
Circle Rd	8.3	\$1.8	\$13,144
MMWD/SASM	81	\$3.5	\$3,436
San Quentin	150	\$9.2	\$4,442

Limited volumes, high unit costs that may be addressed by grants

Onsite Re-use

- On-Site Non-Potable Re-use (ONWS) capture and treat water sources
 generated from within or surrounding a
 building, such as wastewater, greywater,
 storm water, or roof collected rainwater.
 The treated water is then reused onsite
 or locally.
- Suitable for large buildings or campus facilities
- SFPUC leader in this area and requires new development projects over 250,000 sf to use ONWS systems

Satellite / Scalping Plants

• Scalping plants are **small wastewater treatment plants** that remove liquid from wastewater lines and treat the water to standards acceptable for irrigation.

Projects that have been evaluated have unit costs of \$6,000 / AF compared to centralized project costs of \$3000 / AF

Environmental Reuse-Streamflow Augmentation

- Full Advanced Water Treatment:
 - Ultra Filtration / Reverse Osmosis / UV
- Move water from sea level to Kent
- Cooling of water may be needed
- Capital \$359M
- Operating \$7.9M
- \$3,300/AF

Streamflow depend on storage and may be impacted in drought conditions

Expanding Storage

Excavation or Dredging

- 1,000 AF capacity = 1.6 million cubic yards
 →~40,000 truck trips
- Recent costs for excavation \$45/cubic yard
- Estimate cost per 1,000 AF of capacity = \$72M
- Capacity of reservoirs is typically in the top layers
- Regulatory/environmental approvals for the dredging or excavation work itself
- Requires new water rights

Expand Storage

- Raise Soulajule Dam
 - Existing capacity = 10,000 AF
 - Raise dam 48 feet
 - New Capacity = 30,000 AF
- Yield affected by
 - Water rights
 - Environmental releases

Groundwater Storage (Banking)

- Santa Rosa Plain Conjunctive Use
- In wet years MMWD buys extra SCWA water to be used by groundwater agency in lieu of groundwater pumping
- In dry years MMWD has access to the groundwater less some losses
- Requires management of the basin to prevent over drafting
- Capacity of aquifer in wet or normal years to accept recharge is unknown
- SCWA flows may be subject to allocations

Local Desalination Plant

- Capacity 5 to 15 MGD
 - Intake 4500 ft of 48-inch HDPE pipe to 1-mm self cleaning screens
 - Pre-treatment Ultra-filtration membrane system
 - Desalination Reverse osmosis system
 - Treated water disinfection, storage, pump station and pipeline
 - Brine holding tank, pump station and 3500 ft of 30-inch pipeline to CMSA outfall
- Capital Cost
 - 5-MGD = \$152 M / cost per AF = \$2,710
 - 10-MGD = \$192 M / cost per AF = \$2,173
 - 15-MGD = \$222 M / cost per AF = \$1,962
- Annual Operating Cost for 15-MGD Desalination plant =~\$20M
- Schedule to produce water likely greater than 48 months

Interties

- Existing Interties:
 - MMWD Sonoma
 - CCWD East Bay MUD
 - Hayward East Bay MUD
 - Hayward ACWD
 - ACWD Zone 7
 - SFPUC ACWD
 - SFPUC Valley Water
- Proposed Interties:
 - MMWD East Bay MUD (1)
 - CCWD South Bay Aqueduct (2)
- Potential Intertie
 - Sonoma North Bay Aqueduct (3)

Water Supply Project Example Prioritization

Project	Priority	Yield [AF]	Cost	Cost/AF
Intertie	High	9000	\$100	TBD
DPR	Med	2200	\$45	\$2,400
IPR .	High	6000	\$359	\$3,300
Purple Pipe	Med	150	\$9.20	\$4,400
Environmental Releases	Low	6000	\$359	\$3,300
Dredging/Excavation	Low	1,000	\$72M	\$7,200
Raise Soulajule Dam	Low	20,000	\$100M	\$2,100
Groundwater Banking	High	900	\$1M	\$1,400
Regional Desalination	Low	5000	\$75M	\$1,825
Local Desal	Low	5000	\$150M	\$2,710
Containerized Desal	Low	2000	\$70M	\$3,510
Watershed Mangement	High	200	N/A	N/A
Shade Balls	Med	3600	TBD	TBD
Fog Harvesting	Low	10	\$5M	\$25,000
Cloud Seeding	Low	500	\$0.50	\$7,400

Ideal characteristics of water source:

- No environmental impacts
- Climate change resilient
- Low energy / carbon footprint
- High quality

Next Steps

- Continue developing drought projects (EIP/Desal/Winter Water)
- Based on board input further develop action/implementation plan for long term water supply opportunities