

Strategic Water Supply Assessment

BOARD WORKING SESSION #3

May 24, 2022

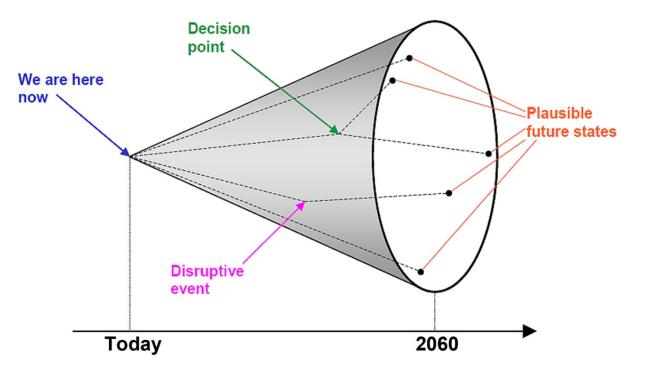
Board Working Session #3 Agenda

- Proposed Planning Scenarios
- Decision Support Model Overview
- DRAFT Baseline Simulation Results
- Next Steps

Preview of Board Engagement Schedule

- Periodic Updates and Board Discussions
- April
 - Overview of Water Supply Assessment
- May
 - Demand Management
 - Drought Scenarios & Baseline Reliability *
- June/July/August
 - Scenarios and Results
 - Water Supply Alternatives
 - Evaluation Process
 - Roadmap

Assessment & Process


Key Project Scope Elements

Drought Scenarios

Water Supply and Demand Scenarios

- Recognizing that future is uncertain
 - Climate change
 - Drought variability
 - Demands
 - Policies and regulations
- Seeking robust solutions
- Scenarios allow us to explore plausible future conditions and identify promising solutions
 - Historical droughts
 - Climate projections
 - Paleo reconstructions
 - Stress tests

Scenarios are alternative views of how the future might unfold. Scenarios are not predictions or forecasts of the future

Scenarios

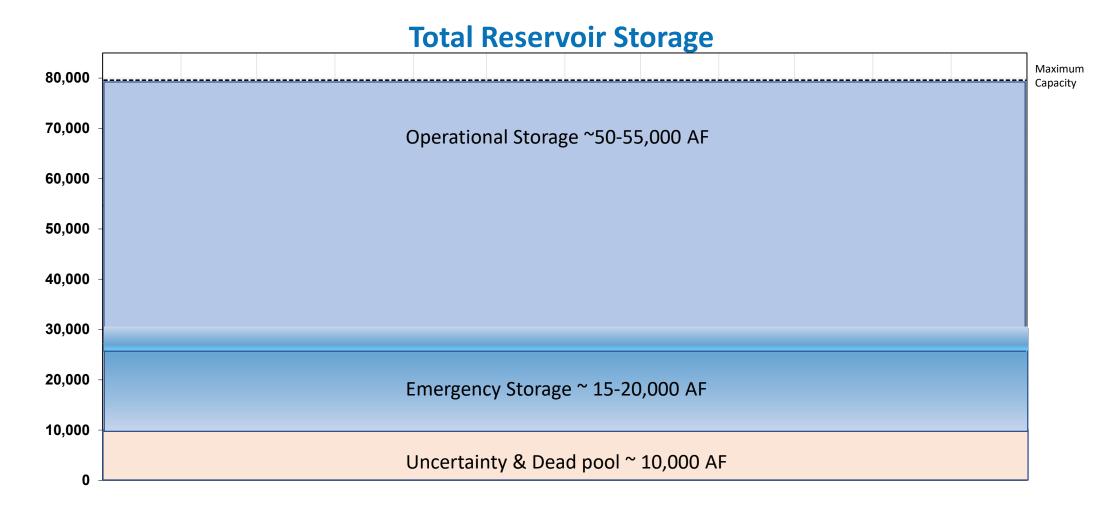
- Scenarios are intended to capture uncertainty that is NOT in management control for this decision
- Water Supply Hydroclimate
 - Historical
 - Climate projections
 - Paleo reconstructions
 - Synthetic droughts
- Water Demand
 - Recent trends
 - Population growth and land use
 - Passive levels increasing water use efficiency

Draft Scenarios – Explore Uncertainties We Don't Control

Scenario 1 – Current Trends

Scenario 2 – Accelerated Conservation

Scenario 3 – Short and Severe Drought

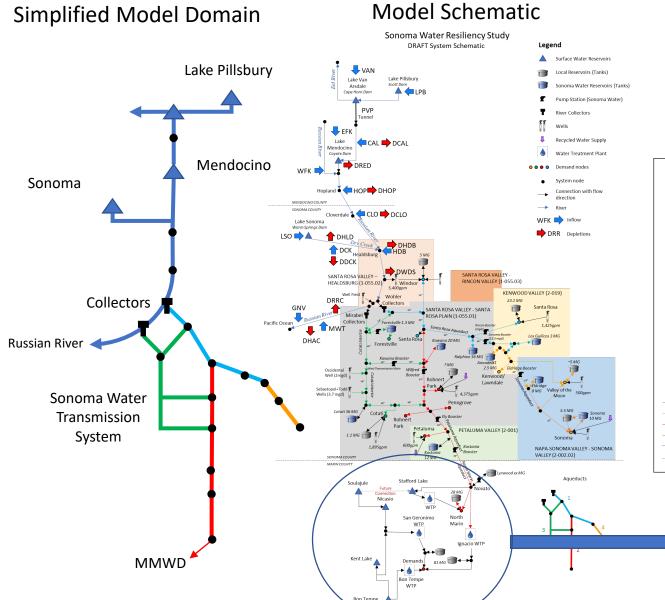

Scenario 4 – Beyond Drought of Record

Scenario 5 – Abrupt Disruptions

Draft Scenario Assumptions

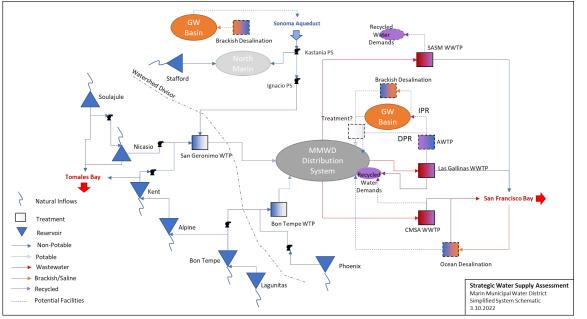
Scenario	Hydroclimate Assumptions	Demand Assumptions	Operational Assumptions
Scenario 1 – Current Trends	Historical observed	Passive-level savings per UWMP; approx. 8% less than w/o passive by 2045	Current operations; local supply preference; supplemental water with KPS rehab
Scenario 2 – Accelerated Conservation	Historical observed	Passive plus programmatic savings; approx. 14% less than w/o passive by 2045	Current operations; local supply preference; supplemental water with KPS rehab
Scenario 3 – Short and Severe Drought	Synthetic 4-Yr drought (2020, 2021, 1976, 1977)	Combine with either passive or passive plus programmatic assumptions	Current operations; local supply preference; supplemental water with KPS rehab
Scenario 4 – Beyond Drought of Record	Long-range, extended 6- or 7-Yr drought (based on downscaled GCMs)	Combine with either passive or passive plus programmatic assumptions	Current operations; local supply preference; supplemental water with KPS rehab
Scenario 5 – Abrupt Disruptions (TBD)	Synthetic 4-Yr drought (2020, 2021, 1976, 1977); high wildfire likelihood	Combine with either passive or passive plus programmatic assumptions	EX: Operational disruptions due to post-wildfire sediment loads Ex: Seismic, PVP, Policy-based disruptions

Defining Minimum Acceptable Storage Levels

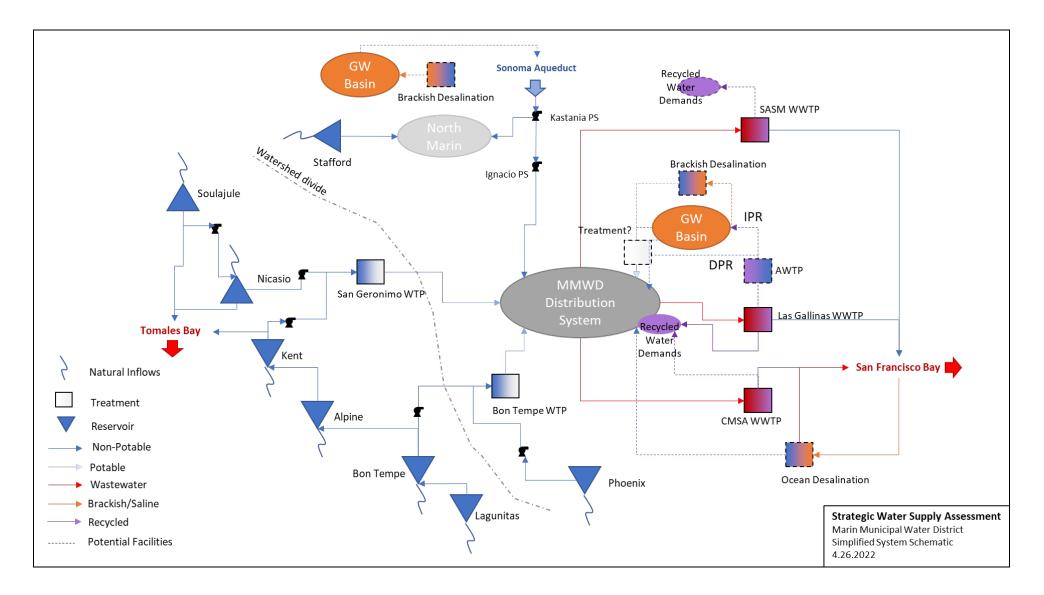


Decision Support Model

Model Purpose


- Model to provide information on system performance under various scenarios and water management
 - What is the current risk to MMWD's water delivery reliability under recent and projected future droughts?
 - How much additional water supply is needed under different future hydrologic drought and demand scenarios?
 - Test performance of future water management alternatives
- Water balance and system operations representation of the MMWD system
- Calculations daily time step
- Not a Hydraulic model

DSM – System Representation



Top-Down model development approach, start with high level assumptions, add details as needed

Additional details for MMWD

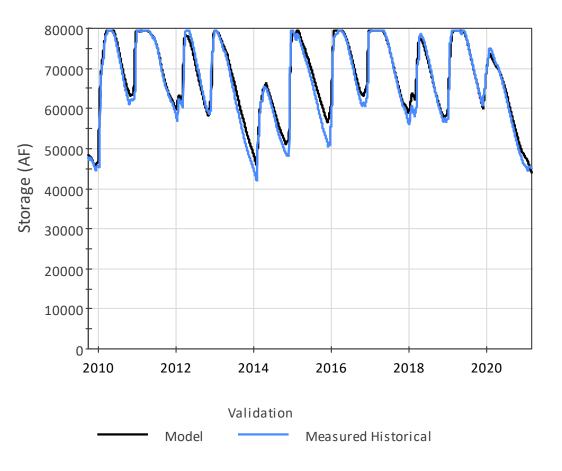
DSM – Marin Municipal WD Representation

Key Model Assumptions/Input Data Quality

- Inflows to MMWD reservoirs (1927-2021) monthly time step:
 - Historical Data (1927-2000) 2002 Water Supply Planning Model & Preliminary Water Supply Option Analyses report
 - Historical Data (1992-2021) Water Resources Plan 2040 report and updated since 2017
- Inflows to Russian River (1910-2017):
 - Obtained from Sonoma Water BCM & HEC ResSim model daily flows
- Lagunitas Precipitation Records (1879-present)
- Existing system, plus future projects that can be turned ON/OFF
- Daily time step with results reported in monthly/annual time scale since not all inputs are available in a daily time scale
- Assume that the inflow and precipitation records are accurate
 - High-level independent checks are being performed

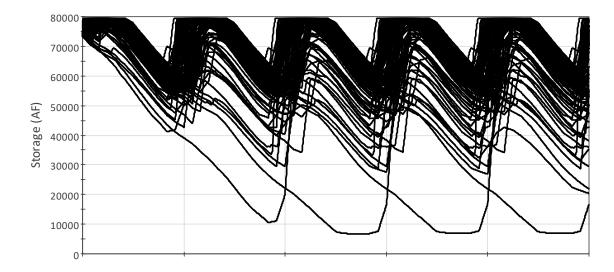
Main Model Inputs:

- River flows
- Reservoir inflows
- Local supplies
- System demands
- Flow limitations
- System operation

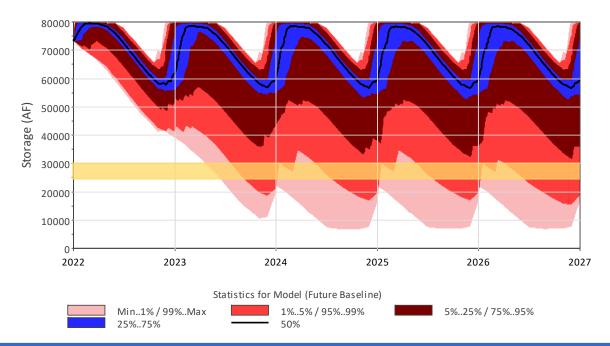

Main Model Outputs:

- Model Scenarios
- System deliveries for different supplies
- Reservoir Levels
- System flows

Model Validation


- Main model validation is the historical run of the model, where historical demands and historical reservoir inflows are used
- Validation Period: 2009 2021
- Validation Parameters:
 - Reservoir storage, deliveries of supplies, water treatment plant production
- Validation Approach:
 - Review data, review operations, add more model detail
- MMWD staff is working together with Jacobs to validate model results independently based on systems knowledge

MMWD Total Surface Storage



Sample Model Simulation Results

- For each scenario:
 - Initial storage conditions
 - Demand assumptions
 - 107 individual hydrological inflow traces
- Results evaluation:
 - Individual trace outcomes OR
 - Probabilities based on ensemble of results
- Compare to performance measure
 - Frequency and magnitude of deficits

Status and Next Steps

Work in Progress

- Full quantification of scenarios
- Updates to decision support model
- Further development of water supply alternatives
 - alignments, cost, quality, feasibility, etc
- Detailed evaluation criteria

Schedule

- Proposed Upcoming Board Discussion Focus Areas
 - May
 - May 10 Demand Management
 - May 24 Drought Scenarios & Baseline Reliability
 - June
 - June 14 Scenarios
 - June 28 Water Supply Alternatives
 - July/August
 - Evaluation Process
 - Roadmap Development
- Public Meetings
 - June 2 Public Workshop #2
 - August TBD Public Workshop #3

