

Strategic Water Supply Assessment

BOARD WORKSHOP #5

June 28, 2022

Workshop Agenda: Strategic Water Supply Assessment

- Project Update
- Assumptions and Estimates
- Overview of Water Management Alternatives
- Summary and Next Steps
- **Q&A**

Strategic Water Supply Assessment: Schedule

- June 28 (5pm-7pm) Initial Review of Water Management Options
- July 12 (5pm-7pm) Review Desalination and Recycled Water
- July 19 (7:30pm 9:30pm) Review Interties, Local Supply Enhancement and Sonoma options
- July TBD Public Workshop
- August 9 (5pm-7pm) Evaluation of Water Management Alternatives
- August 23 (5pm-7pm) Evaluation of Water management alternatives
- August TBD Public Workshop

Project Overview

Water Supply Assessment: Project Overview

- Strategic Water Supply Assessment will be additive to past planning efforts and is designed to fill in the gaps on water supply alternatives
- Comparative analysis of water supply options available to MMWD and provide recommendations on a strategic water supply roadmap
- Respond to accelerated pace of climate change and greater hydrologic extremes than those that have occurred in the past

Project Overview

The Assessment will address the following questions:

- 1. What is the current risk to MMWD's water delivery reliability under recent and projected future droughts?
- 2. How much additional water supply is needed under different future hydrologic drought and demand scenarios?
- 3. What are the range of water supply alternatives that could increase resiliency of MMWD's system? And what are their strengths and weaknesses?
- 4. What recommendations can be developed to support MMWD's near-term investment in drought resiliency?

Process for Assessment

Key Project Scope Elements

Water Supply Assessment Process

- Consider a broad range of water management alternatives
- Identify most promising alternatives
- Evaluate alternatives for performance and other economic, environmental, and social criteria
- Explore strategic combinations of alternatives
- Develop roadmap with specific project, pathways, and triggers to achieve resilient and sustainable solutions

Water Management Alternatives

Water Management Alternatives Considered

- Baseline Existing water supply system with planned improvements
- Desalination
- Recycled Water
- Water Purchases with Conveyance through Bay Interties
- Sonoma-Marin Partnerships
- Local Surface Storage
- Drought Conservation

Assumptions & Estimates

Assumptions & Estimates

- Water Management Alternatives Level of Development
 - Developed from review of previous water supply assessments for the District
 - Review of project elements and updates based on team's related experience
 - High-level technical evaluations of alternatives
 - Reviewed conveyance needs and developed concept-level routing and sizing
 - Preliminary modeling of some alternatives to support yield estimation
- Work Continuing to Refine Alternatives
 - Yield estimates are for new supply expressed as acre-feet per year of new supply
 - Operational changes to integrate and optimize use of new supply is important and is underway
 - Modeling forthcoming to evaluate how yields translate to drought benefit

Assumptions & Estimates

- Cost Assumptions:
 - Class 5 Cost Estimates.
 - Typical expected accuracy range for Class 5 estimate is -20 to -50 percent on the low side and +30 to +100 percent on the high side.
 - Support the relative cost comparison of alternatives
 - Capital Costs and Annual O&M Costs
 - 30-year Project Planning Period
 - 3% Interest rate
- 3 Types of Cost Estimating Approaches:
 - Independent evaluation using Jacobs' cost estimating tools
 - Updated estimates from previous studies escalated to reflect 2022 conditions
 - Costs from comparable related projects

COSTS SHOULD BE CONSIDERED DRAFT AND WILL BE UPDATED

Desalination

Desalination

- 1. Marin Regional Desalination Facility
- 2. Containerized/Leased Desalination Facility
- 3. Bay Area Regional Desalination Facility
- 4. Petaluma Brackish Regional Desalination

Option 1: Marin Regional Desalination Facility (MRDF)

- Description
 - Permanent facility at Pelican Way storage site
 - Intake pump station on un-developed property north of PW site
 - 5-mgd capacity, expandable to 10 or 15 mgd
 - Treated water connections to existing distribution system in Forbes and Ross pressure zones
- Treatment Process
 - Open (screened) intake and pump station
 - Strainer (fine screen)
 - Micro- or ultra-filtration with coagulant feed
 - 1st pass reverse osmosis (RO)
 - 2nd pass RO (optional)
 - Post treatment (remineralization, disinfection, corrosion control and fluoridation)
 - Residuals treatment and offsite solids disposal
- Brine discharge to CMSA outfall
- Considerations
 - Update of EIR and CEQA
 - Considerable timeline to obtain all required permits
 - O&M strategy if used for drought mitigation only

Option 2: Containerized Desalination Facility

- Description:
 - 5.4-mgd capacity (three 1.8-mgd systems)
 - Integrated, containerized system for process equipment
 - Could be leased or purchased
 - Default provider: Osmoflo (Australia); other providers (Suez, Seven Seas)
- Treatment Process:
 - Open (screened) intake and pump station
 - Strainer (fine screen)
 - Micro- or ultra-filtration
 - 1st pass reverse osmosis (RO)
 - Post treatment (remineralization, disinfection, corrosion control and fluoridation)
 - Treated water
- Brine (and backwash waste) discharge to CMSA outfall
- Considerations:
 - Update of EIR and CEQA
 - Considerable timeline to obtain all required permits
 - O&M strategy if used for drought mitigation only
 - Equipment availability and reliability

Option 3: Bay Area Regional Desalination Facility (BARDF)

Partners

- CCWD, EBMUD, SFPUC, Valley Water, Zone 7 Water Agency
- Description
 - Intake (existing) and desal facility at CCWD Mallard Slough site
 - 20-mgd capacity; 5 mgd dedicated to MMWD
 - Treated water wheeled to Pelican Way site
 - Store and pump from Pelican Way into distribution system (similar to Option 1)
- Treatment Process
 - Similar to Desal options 1 and 2 except:
 - 2-stage seawater/brackish RO system
 - Higher recovery (82 versus 45%)
- Brine discharge to CCCSD or DDSD outfall
- Considerations
 - Availability of water given other partner's needs
 - Minimal MMWD permit requirements
 - Fewer project permits and shorter permitting

Desalination Options Cost Estimate Summary

	Option 1A:	Option 1B:	Option 1C:	Option 2:	Option 3:	Option 4:
	Marin Regional	Marin Regional Desal	Marin Regional Desal	Containerized/Leased	Bay Area Desal	Petaluma
Alternative	Desal Facility-5 mgd	Facility-10 mgd	Facility-15 mgd	Desal Facility	Facility (1,2,3)	Brackish Desal
Capital Cost	\$356,728,000	\$431,835,000	\$502,032,000	\$143,648,000	\$703,372,600	
Annual O&M Cost	\$ 14,999,000	\$25,265,000	\$35,076,000	\$9,369,300	\$6,873,324	In progress
Total Annualized Cost	\$33,199,000	\$47,297,000	\$60,689,000	\$59,226,507	\$21,840,324	
Yield, AFY	5600	11200	16800	6048	5600	2240
Cost per AFY	\$5,900	\$4,200	\$3,600	\$9,793	\$4,040	\$1700-2500

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Water Reuse

Water Reuse

- Recycled Water expansion of nonpotable reuse system (LGVSD-Peacock Gap; CMSA-San Quentin)
- 2. Indirect Potable Reuse (IPR) Advanced treatment, discharge to Kent Lake
- 3. Environmental releases Discharge to Kent Lake (same as IPR)
- 4. Direct Potable reuse (DPR) Advanced treatment for DPR, CMSA to distribution system, or discharge to Bon Tempe Lake for Bon Tempe WTP intake

Option 1: Non-Potable Reuse Expansion

Description:

- Expansion of LGVSD RW distribution system to provide disinfected tertiary RW to Peacock Gap Golf Course (166 AFY)
 - Ongoing project, using existing 5 MGD LGVSD recycled water treatment plant for disinfected tertiary
 - CIP budgeted \$11M
 - Annual Demand 166 AFY
- Installation of membrane (MF) at CMSA, provide disinfected tertiary RW to San Quentin Prison (154 AFY)
 - Identified in Water Supply Plan 2040, constructing microfiltration-based disinfected tertiary treatment plant
 - Delivery of recycled water to San Quentin Prison for non-potable reuse
 - 6-inch, 3,800 LF distribution pipeline
 - 50 HP 290 gpm pump station
 - Annual Demand 154 AFY
- Considerations
 - Demand is seasonal, limited volume
 - Other non-potable reuse options considered are small yield (less than 150AFY)

Option 2: Indirect Potable Reuse (IPR)

- Description
 - Collect secondary effluent from LGVSD and SASM to CMSA
 - Provide Advanced Water Purification Facility up to 8.8 mgd (7 mgd yield = 7,840 AFY)
 - Ultrafiltration, Reverse Osmosis, UV-AOP, RO reject to CMSA outfall
 - Advanced Water Purification Facility designed to meet Surface Water Augmentation IPR treatment requirements:
 - Convey purified water to Kent Lake
 - Discharge RO reject to CMSA effluent
 - Purified water delivered to Kent Lake could be considered as either surface water augmentation IPR or in-lieu stream flow
- Considerations
 - Water balance (secondary effluent availability for IPR)
 - Discharge permit for RO reject
 - CMSA footprint to accommodate the AWPF
 - Kent Lake is primary release for Lagunitas Creek

Option 3: In-lieu for Streamflow Release

Description

- Provide disinfected tertiary RW, cool to adjust temperature, release to Lagunitas Creek, or
- Provide IPR as described, discharge purified water to Kent Lake to provide both IPR and streamflow augmentation
- Considerations
 - Effluent temperature will be higher than Lagunitas Creek temperature (need temperature adjustment or discharge to larger water body - Kent Lake)
 - Tertiary effluent may not meet some of quality requirements (e.g., nutrients, TDS/EC, metals)
 - Due to seasonal minimum flow requirements, potentially available effluent (7,840 AFY) exceeds requirements during dry season, not enough during wet season
 - In dry year, dry season, only 4,300 AFY flow is recognized for in-lieu streamflow release
 - Fold into the Regional IPR concept dual benefit between IPR and Streamflow, recognize entire available effluent flow

Normal Year Requirements						
	Time F	Period	Flow, cfs	Flow, AFY		
November 1/15*	-	December 31	20	14,500		
January 1	-	March 15	25	18,100		
March 16	-	March 31	20	14,500		
April 1	-	April 30	16	11,600		
May 1	-	June 15	12	8,700		
June 16	-	November 1/15*	8	5,800		
Dry Year Requirem	Dry Year Requirements					
	Time F	Period	Flow, cfs	Flow, AFY		
November 1/15*	-	March 31	20	14,500		
April 1	-	April 30	14	10,100		
May 1	-	June 15	10	7,200		
June 16	-	November 1/15	6	4,300		

Option 4: Direct Potable Reuse (DPR)

Description

- Advanced Water Purification Facility at CMSA
 - Only treat CMSA effluent, connection to exiting distribution (treated water augmentation) at up to 4 mgd, or
 - Convey secondary effluent from LGVSD and SASM, treat up to 8.8 mgd produce up to 7 mgd purified water and convey to Bon Tempe Lake (raw water augmentation)
- Advanced Water Purification Facility targeted to meet current <u>DRAFT</u> DPR treatment requirements:
- Treatment Trains include:
 - Ozone/BAC
 - Ultrafiltration
 - Reverse Osmosis
 - UV-Advanced Oxidation
 - Chlorine contact
 - Dechlorination (for Bon Tempe discharge only)
 - Purified water transfer pump station
 - Engineered Storage/Bon Tempe Lake discharge
 - RO reject disposal to CMSA outfall
- Considerations
 - Water balance (secondary effluent availability for DPR)
 - Discharge permit for RO reject
 - CMSA footprint to accommodate the AWPF

Water Reuse Options Cost Estimate Summary

	(Option 1A:	(Non-P	Option 1B: Potable Peacock	Regio	Option 2: onal IPR (3-In lieu	CMS	Option 4A: SA DPR (Treated	Optic DPI	on 4B: Regional R (Raw Water
Alternative	Non-	Potable CMSA		Gap		Streamflow)	Wate	er Augmentation)	Au	gmentation)
Capital Cost	\$	10,819,000	\$	11,932,000	\$	451,965,000	\$	124,395,000	\$	382,679,000
Annual O&M Cost	\$	147,000	\$	1,080,865	\$	9,964,000	\$	8,834,000	\$	15,747,000
Total Annualized Cost	\$	699,000	\$	166,000	\$	33,023,000	\$	15,328,000	\$	35,039,000
Yield, AFY		200		166		7840		4480		7840
Cost per AF	\$	3,500	\$	4,700	\$	4,200	\$	3,400	\$	4,500

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Local Storage Augmentation

Local Storage Augmentation

- 1. Raising Soulajule Dam
- 2. Dredging Nicasio Lake
- 3. Movable Spillway Gates

Source: Salix "Expert desilting or dredging of ponds, lakes, and reservoirs" (http://www.salixrw.com/techniques/lake-desilting/)

Storage Expansion Options Opportunities

- MMWD reservoirs spills average ~53,000 AFY (Last 12 years), Average environmental releases ~ 10,000 AFY
- Environmental releases not being proportionally scaled during critical dry years

Option 1: Raising Soulajule Dam

Description

- Increase Soulajule Dam height by 48 feet
- Additional 20,000 AF of storage in Soulajule (Total storage from 10,000 AF to 30,000 AF).
- Potential Yield ~4,000 AFY
- Electrification of Soulajule

Considerations

- Dam adequacy and structural integrity
- New inundated areas
- Water rights

Option 2: Dredging Nicasio Lake

- Potential yield ~ 1,000 AFY for 10 years
- Challenges: Environmental and fishing interests may oppose the dredging due to potential negative impacts associated with dredging large amounts of sediment, including mobilizing contaminants that have settled in the sediment.

Option 3: Movable Spillway Gates

- Description
 - Increase reservoir storage through installation of movable spillway gates
 - Gates to be installed and operated to retain additional storage during wet periods
 - Likely limited to 3 feet of increase
- Considerations
 - Adequacy of spillway and dam
 - Increased inundated lake area

i ciati v									
Elevation Increase (ft)	Kent Lake (acre-feet)	Nicasio (acre-feet)	Soulajule (acre-feet) (earthen)	Lagunitas (acre-feet)	Alpine Lake (acre-feet)				
1	440	750	300	20	230				
2	880	1520	620	40	460				
3	1330	2310	930	60	700				
4	1780	3110	1250	80	930				
5	2240	3920	1580	100	1180				

Figure 10-3 afford Laker Main SpillWay Movable Notch Gate North Gates Water Durkin Ciccar Water Low

Local Storage Options Cost Estimate Summary

Alternative	Option 1: Raising Soulajule	Option 2: Dredging Nicasio	Option 3: Movable Spillway Gates
Capital Cost	\$128,824,000	\$166,062,000	\$5,000,000
Annual O&M Cost	\$4,177,000	\$-	\$20,000
Total Annualized Cost	\$10,750,000	\$19,468,000	\$71,000
Yield, AFY	4000	1000	350
Cost per AFY	\$2,700	\$19,500	\$800

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Sonoma-Marin Partnerships

Sonoma-Marin Partnerships

- 1. Maximize Use of Sonoma Water in Winter
- 2. Develop Dedicated Conveyance to Soulajule or Nicasio Reservoirs
- 3. Groundwater Well Rehabilitation
- 4. Regional Groundwater Bank

Option 1: Maximize Use of Sonoma Water in Winter

- Operate to Maximize Use of Surplus Russian River Water in Winter
 - Maximize use in Winter
 - Maximize take of Sonoma Water up to contractual amount 14,300 AFY (12.8 mgd)
 - Reduce use of MMWD local reservoir water supply
- Existing Conveyance Limitations
 - Kastania (21.5 mgd) Pump Station Improvements and Ignacio Pump Stations (14.8 mgd)
 - Bottleneck becomes system winter demands (14 mgd)
- Develop Integrated Reservoir Operational Strategy
 - Optimize the balance of MMWD reservoir and Sonoma Water supplies dependent on hydrology, storage conditions, and demand

Russian River Collectors, Diversion Dam, and Fish Passage

Option 2: Develop Dedicated Conveyance to Soulajule or Nicasio Reservoirs

Description

- Maximize use of Sonoma Winter Water through dedicated conveyance
- South Transmission System pipeline to increase conveyance between Cotati tanks and Kastania
- Connection between Lake Stafford and Soulajule or Nicasio reservoirs.
- Pump station to augment delivery of water
- Electrification of Soulajule pump station
- Considerations
 - North Marin Water District seeking similar operation
 - Pumping to watershed divide or all the way to reservoir
 - Potential risk of spill if prolonged wet period occurs
 - Could be linked with storage augmentation

Option 3: Groundwater Well Rehabilitation

- Sonoma Water operates groundwater production wells in the San Rosa Plain
- Wells have not been activated in recent years
- Rehabilitation of wells is underway (5.5 mgd or ~6,000 AFY)
 - Todd Road Well (1.4 mgd)
 - Sebastopol Road Well (2.1 mgd)
 - Occidental Road Well (2.0 mgd)
- Increasing production will provide more reliable delivery to MMWD

Option 4: Regional Groundwater Bank

- Potential Regional Groundwater Bank
 - Santa Rosa Plain
 - Sonoma Valley
 - Petaluma Valley
- Facilities
 - ASR Wells in Each Basin
 - Connections to aqueduct
 - Treatment?
- Water Storage Operation
 - Put: Winter or Recycled Water
 - Storage: Participant Pools + contribution to basin
 - Take: Drought year pumping
- Delivery
 - Direct delivery or in-lieu exchanges
- Considerations
 - Groundwater Sustainability Agencies (GSAs) developing Plans
 - Alignment with benefits for overlying pumpers
 - Exchange agreements and accounting systems

Sonoma-Marin Partnership Options Cost Estimate Summary

	Option 1:	Option 2:	Option 3:	
	Maximize Use of Winter	Dedicated Conveyance	Sonoma Water Well	Option 4: Regional
Alternative	Water	to MMWD Reservoirs	Rehabilitation	Groundwater Bank
Capital Cost		\$139,000,000	\$7,000,000	\$20,000,000
Annual O&M Cost	\$6,500,000	\$-	\$2,600,000	\$3,900,000
Total Annualized Cost	\$6,500,000	\$20,400,000	\$2,957,000	\$4,920,000
Yield, AFY	5000	8000	2000	3000
Cost per AFY	\$1,300	\$3,400	\$1500	\$1600

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Water Purchases with Conveyance through Bay Interties

Water Purchases with Conveyance through Bay Interties

- EBMUD Intertie (Sac Valley purchases)
- CCWD Intertie (Sac Valley purchases)
- North Bay Aqueduct Intertie (Sac Valley purchases)
- SFPUC Intertie (Golden Gate Bridge)

EBMUD or CCWD Intertie

- Sac Valley water purchases conveyed through EBMUD or CCWD systems
- Pipeline to connect to EBMUD or CCWD systems and across San Rafael Bridge (27")
- MMWD tie in near CMSA
- Richmond distribution improvements for EBMUD customers
- Alternative to connect to CCWD, rather than EBMUD
- Significant permitting requirements

North Bay Aqueduct - Intertie

- Sac Valley water purchases conveyed through North Bay Aqueduct
- Pipeline and pump station to connect to MMWD system
- Potential connection to Sonoma Water system for regional supply

Water Purchases through Bay Intertie Options Cost Estimate Summary

Alternative	Option 1: EBMUD Intertie	Option 2: CCWD Aqueduct Intertie	Option 3: North Bay Aqueduct Intertie	Option 4: SFPUC Intertie		
Capital Cost	\$159,900,000	\$485,000,000	\$300,000,000			
Annual O&M Cost	\$14,202,000	\$11,457,000	\$6,365,000			
Total Annualized Cost	\$22,360,000	\$36,201,000	\$21,651,000		In progress	
Yield, AFY	9000	9000	5000			
Cost per AFY	\$2,500	\$4,000	\$4,300			

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Status and Next Steps

Work in Progress

- Water management alternatives, costs, and other evaluation criteria being further progressed
- Integration of water management alternatives into decision support model is <u>necessary</u> to evaluate yield of supplies when integrated into system
- Structure for forecast-based decision-making on integrating and optimizing supplies
- Detailed evaluation criteria

Strategic Water Supply Assessment: Schedule

- June 28 (5pm-7pm) Initial Review of Water Management Options
- July 12 (5pm-7pm) Review Desalination and Recycled Water
- July 19 (7:30pm 9:30pm) Review Interties, Local Supply Enhancement and Sonoma options
- July TBD Public Workshop
- August 9 (5pm-7pm) Evaluation of Water Management Alternatives
- August 23 (5pm-7pm) Evaluation of Water management alternatives
- August TBD Public Workshop

