

Strategic Water Supply Assessment

BOARD WORKING SESSION #6

July 12, 2022

Workshop Agenda: Strategic Water Supply Assessment Desalination and Reuse Options

- Project Overview
- Water Supply Alternatives Reuse and Desalination
- Schedule and Next Steps
- **Q&A**

Project Overview

Key Project Scope Elements

Water Supply Assessment Process

- Consider a broad range of water management alternatives
- Identify most promising alternatives
- Evaluate alternatives for performance and other economic, environmental, and social criteria
- Explore strategic combinations of alternatives
- Develop roadmap with specific project, pathways, and triggers to achieve resilient and sustainable solutions

Water Supply Alternatives

Water Supply Alternatives

- Baseline Existing water supply system with planned improvements
- Desalination
- Recycled Water
- Local Surface Storage
- Sonoma-Marin Partnerships
- Water Purchases with Conveyance through Bay Interties

Assumptions & Estimates

- Cost Assumptions:
 - Class 5 Cost Estimates.
 - Typical expected accuracy range for Class 5 estimate is -20 to -50 percent on the low side and +30 to +100 percent on the high side.
 - Support the relative cost comparison of alternatives
 - Capital Costs and Annual O&M Costs
 - 30-year Project Planning Period
 - 3% Interest rate
- 3 Types of Cost Estimating Approaches:
 - Independent evaluation using Jacobs' cost estimating tools
 - Updated estimates from previous studies escalated to reflect 2022 conditions
 - Costs from comparable related projects
- COSTS SHOULD BE CONSIDERED DRAFT AND WILL BE UPDATED

Water Reuse

Water Reuse

- Recycled Water expansion of nonpotable reuse system (LGVSD-Peacock Gap; CMSA-San Quentin)
- 2. Indirect Potable Reuse (IPR) Advanced treatment, discharge to Kent Lake
- 3. Environmental releases Advanced treatment, discharge to Kent Lake stream release (IPR)
- 4. Direct Potable reuse (DPR) Advanced treatment for DPR, CMSA to distribution system, or discharge to Bon Tempe Lake for Bon Tempe WTP intake

Overview

Wastewater Treatment Facilities

- Central Marin Sanitation Authority (CMSA)
- Sewerage Agency of South Marin (SASM)
- Las Gallinas Valley Sanitary District (LGFVSD)

General Considerations:

- Increasing water conservation limits available supply
- Increasing "purple pipe" reuse will limit available supply for regional IPR/DPR concept
- Increased water conservation will change water quality characteristics

Option 1: Non-Potable Reuse Expansion

- Two Non-Potable Reuse Projects Considered:
 - Expansion of LGVSD RW distribution system to provide disinfected tertiary RW to Peacock Gap Golf Course (166 AFY)
 - Installation of membrane (MF) at CMSA, provide disinfected tertiary RW to San Quentin Prison (154 AFY)

Option 1a: Non-Potable Reuse Expansion LGVSD RW to Peacock Gap

- Description:
 - Expansion of LGVSD RW distribution system to provide disinfected tertiary RW to Peacock Gap Golf Course
 - Annual Demand 166 AFY
 - Ongoing project, using existing 5 MGD LGVSD recycled water treatment plant for disinfected tertiary
 - South Route (expansion of existing distribution system through southern route to Peacock Gap Golf Course area) being investigated
- Considerations
 - Small volume of water relative to cost
 - Demand is seasonal
 - Extension of distribution system
 - It will limit effluent availability for IPR/DPR program if implemented

Option 1b: Non-Potable Reuse Expansion CMSA RW to San Quentin

- Description:
 - Installation of membrane (MF) at CMSA, provide disinfected tertiary RW to San Quentin Prison
 - Annual Demand 154 AFY
 - Microfiltration disinfected tertiary treatment plant
 - Delivery of recycled water to San Quentin Prison for toilet flushing, landscape irrigation, boiler makeup
 - 6-inch, 3,800 LF distribution pipeline
 - 50 HP 290 gpm pump station
- Considerations
 - Small volume of water relative to cost
 - Available space at CMSA for plant and potential addition of full advanced treatment process for IPR/DPR
 - Secondary effluent is not nitrified (not suitable for typical evaporative cooling, if considered)

Option 2: Indirect Potable Reuse (IPR)

- Description
 - Expected annual yield 7,840 AFY (7 mgd)
 - Collect secondary effluent from LGVSD and SASM to CMSA
 - Provide Advanced Water Purification Facility to meet Surface Water Augmentation IPR: Ultrafiltration, Reverse Osmosis, UV-AOP, conditioning
 - Discharge RO reject to CMSA effluent outfall
 - Convey purified water to Kent Lake
- Considerations
 - Permitting for blending purified recycled water into Kent Lake water
 - Public outreach and public acceptance
 - Water balance (secondary effluent availability)
 - Discharge permit for RO concentrate
 - Nutrient watershed permit
 - Salinity
 - Trace contaminants
 - Strict reliability requirements, contingency plans and monitoring requirements for IPR
 - CMSA footprint to accommodate the AWPF
 - No operating surface water augmentation IPR in California

Option 3: In-lieu for Streamflow Release

Description

- Provide advanced treatment, cool to adjust temperature, release to Lagunitas Creek, or
- Provide IPR as described in Option 2, discharge purified water to Kent Lake to provide both IPR and streamflow augmentation
- Considerations for Direct Discharge to Lagunitas Creek
 - Effluent needs temperature adjustment
 - Tertiary effluent will not meet quality requirements – will require full advanced treatment (drinking water intake in Lagunitas Creek)
 - Fold into the Regional IPR concept dual benefit between IPR and Streamflow, maximizes use of available effluent flow

Option 4: Direct Potable Reuse (DPR)

Two DPR Projects Considered:

- Treated Water Augmentation DPR: Treat CMSA effluent, connection to exiting distribution at up to 4 mgd (per ongoing CMSA DPR study)
- Raw Water Augmentation DPR: Convey secondary effluent from LGVSD and SASM, produce up to 7 mgd purified water and convey to Bon Tempe Lake (Modification of Regional IPR concept)

From DPR TM (2022)

Option 4a: Treated Water Augmentation Direct Potable Reuse (DPR)

- Description
 - Advanced Water Purification Facility at CMSA, only treat CMSA effluent, connection to exiting distribution (treated water augmentation) at up to 4 mgd
 - Advanced Water Purification Facility targeted to meet <u>DRAFT</u> DPR treatment requirements
 - Treatment Trains include:
 - Ozone/BAC
 - Ultrafiltration
 - Reverse Osmosis
 - UV-Advanced Oxidation
 - Chlorine contact
 - Dechlorination (for Bon Tempe discharge only)
 - Purified water transfer pump station
 - Engineered Storage/Bon Tempe Lake discharge
 - RO reject disposal to CMSA outfall
- Considerations
 - Public acceptance –No implementation of treated water augmentation in the world (first of this kind if implemented)
 - Strict reliability requirements, contingency plans and monitoring requirements for DPR
 - DPR regulations to be in place by December 2023 (could be a delay; could be changes in requirements from current draft)
 - Discharge permit for RO concentrate
 - Ammonia was identified for exceedance with existing permit
 - Trace contaminants

From DPR TM (2022)

Option 4b: Raw Water Augmentation Direct Potable Reuse (DPR)

- Description
 - Advanced Water Purification Facility at CMSA, convey secondary effluent from LGVSD and SASM, treat up to 8.8 mgd to produce up to 7 mgd purified water and convey to Bon Tempe Lake (raw water augmentation)
 - Advanced Water Purification Facility targeted to meet <u>DRAFT</u> DPR treatment requirements
 - Treatment Trains include (Additional unit process from IPR):
 - Ozone/BAC
 - Ultrafiltration
 - Reverse Osmosis
 - UV-Advanced Oxidation
 - Chlorine contact
 - Dechlorination (for Bon Tempe discharge only)
 - Purified water transfer pump station
 - Engineered Storage/Bon Tempe Lake discharge
 - RO reject disposal to CMSA outfall
- Considerations
 - Public acceptance No project in operation for raw water augmentation DPR yet
 - Discharging to a lake California Toxics Rule applies
 - Strict reliability requirements, contingency plans and monitoring requirements for DPR
 - DPR regulations to be in place by December 2023 (could be a delay; could be changes in requirements from current draft)
 - Water balance (secondary effluent availability for DPR)
 - Discharge permit for RO concentrate
 - Nutrient watershed permit, ammonia limit
 - Salinity, trace contaminants
 - CMSA footprint to accommodate the AWPF

From DPR TM (2022)

Water Reuse Risk Factors

No operating facility for IPR surface water augmentation or DPR

Supply reliability

- Water demand down = reuse supply source (Wastewater effluent) availability down
- Competing demand between existing/expanding non-potable reuse and potable reuse
- For potable reuse options, lower Wastewater flow means more concentrated wastewater, potential challenges in RO recovery (current assumption is 80-85%)

Constituents of concern, challenges with source control

- Trace contaminants
- Pharmaceuticals, personal care products, PFAS, other trace organics
- Some chemicals are detectable after full advanced treatment
- Concentrate management for IPR/DPR options, these chemicals will end up in RO concentrate, to be discharged to the Bay
- Dissolved solids, Nutrients
- Trace contaminants

Public acceptance

- Implementing a potable reuse program not yet in operation in California
- Public concerns on low but detectable trace constituents going into water system or lakes
- How RO concentrate is managed

Water Reuse Options Cost Estimate Summary

Alternative	Option 1A: Non-Potable CMSA – 0.14 mgd		Option 1B: Non-Potable Peacock Gap 0.15 mgd		Or Regiona Stream	otion 2: Il IPR (In lieu flow 7 mgd)	CMS Water	Option 4A: A DPR (Treated Augmentation 4 mgd)	Option 4B: Regional DPR (Raw Water Augmentation 7 mgd)		
Capital Cost	\$	10,026,000	\$	14,000,000	\$	451,965,000	\$	124,395,000	\$	433,864,000	
Annual O&M Cost	\$	136,000	\$	166,000	\$	9,964,000	\$	8,981,000	\$	16,009,000	
Total Annualized Cost	\$	648,000	\$	880,000	\$	33,023,000	\$	15,328,000	\$	38,144,000	
Yield, AFY		154		166		7840		4480		7840	
Cost per AF	\$	4,200	\$	5,300	\$	4,200	\$	3,400	\$	4,900	

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side. (Updated)

Desalination

Desalination

- 1. Marin Regional Desalination Facility
- 2. Containerized/Leased Desalination Facility
- 3. Bay Area Regional Desalination Facility
- 4. Petaluma Brackish Regional Desalination (details in progress)

Presentation Topics

- Options summary
- Refinement of capital and operating costs
- Updated cost summary
- Cost comparison with other CA desal facilities

Option 1: Marin Regional Desalination Facility (MRDF)

- Description
 - Permanent facility at Pelican Way storage site
 - Intake pump station on un-developed property north of PW site
 - 5-mgd capacity, expandable to 10 or 15 mgd
 - Treated water connections to existing distribution system in Forbes and Ross pressure zones
- Treatment Process
 - Open (screened) intake and pump station
 - Strainer (fine screen)
 - Micro- or ultra-filtration with coagulant feed
 - 1st pass reverse osmosis (RO)
 - 2nd pass RO (optional)
 - Post treatment (remineralization, disinfection, corrosion control and fluoridation)
 - Residuals treatment and offsite solids disposal
- Brine discharge to CMSA outfall
- Considerations
 - Update of EIR and CEQA
 - Considerable timeline to obtain all required permits
 - O&M strategy if used for drought mitigation only

Option 2: Containerized Desalination Facility

- Description:
 - 5.4-mgd capacity (three 1.8-mgd systems)
 - Integrated, containerized system for process equipment
 - Could be leased or purchased
 - Default provider: Osmoflo (Australia); other providers (Suez, Seven Seas)
- Treatment Process:
 - Open (screened) intake and pump station
 - Strainer (fine screen)
 - Micro- or ultra-filtration
 - 1st pass reverse osmosis (RO)
 - Post treatment (remineralization, disinfection, corrosion control and fluoridation)
 - Treated water stored and pumped into DS at Francisco Way
- Brine (and backwash waste) discharge to CMSA outfall
- Considerations:
 - Update of EIR and CEQA
 - Considerable timeline to obtain all required permits
 - O&M strategy if used for drought mitigation only
 - Equipment availability and reliability

Option 3: Bay Area Regional Desalination Facility (BARDF)

Partners

- CCWD, EBMUD, SFPUC, Valley Water, Zone 7 Water Agency
- Description
 - Intake (existing) and desal facility at CCWD Mallard Slough site
 - 20-mgd capacity; 5 mgd dedicated to MMWD
 - Treated water wheeled to Pelican Way site
 - Store and pump from Pelican Way into distribution system (similar to Option 1)
- Treatment Process
 - Similar to Desal options 1 and 2 except:
 - 2-stage seawater/brackish RO system
 - Higher recovery (82 versus 45%)
- Brine discharge to CCCSD or DDSD outfall
- Considerations
 - Availability of water given other partner's needs
 - Minimal MMWD permit requirements
 - Fewer project permits and shorter permitting

Basis of Design for Option 1 Cost Estimates

Option 1: Permanent Facility

- 5-, 10- and 15-mgd facilities with inherent expandability from 5 to 15 mgd
 - Masonry building size sized for 15-mgd of process equipment
 - Intake, raw water, brine and finished water piping sized for 15 mgd
 - Yard piping sized for 15 mgd
 - Raw water, brine and finished water pump station
 - Other facilities sized based on plant capacity
 - Pump stations
 - Process equipment
- This approach results in higher construction and production costs for 5-mgd facility compared with fixed-capacity facility

Adjustments to Capital Cost Estimate Factors

- Percentage-based cost factors used to estimate capital costs were adjusted in 2022 to account for current market conditions and other factors
- This results in a significant increase in capital costs for all desal options
- For July 2022 refined draft cost estimates, permitting has been decreased from 3 to 2.5%; other percentages remain the same

Non-Direct Facility Costs	2021	2022	Increase
Additional Project Costs			
Sitework	6.0%	6.0%	
Yard Electrical	10.0%	10.0%	
Yard Piping	7.0%	7.0%	
Plant Instrumentation and Controls	5.0%	3.0%	
Sales Tax on Material	0.0%	8.3%	
General Conditions	0.0%	7.0%	13.3%
Contractor Markups			
Overhead	6.0%	12.0%	
Profit	10.0%	6.0%	
Mob/Bonds/Insurance	3.0%	8.2%	7.2%
Contingency	30.0%	30.0%	0.0%
Permitting	1.0%	3.0%	
Engineering	8.0%	11.5%	
Services during Construction	8.0%	13.5%	11.0%

Option 1: Marin Regional Desalination Facility (MRDF)

Cost refinements have resulted in lower capital, operating and production costs for 2022 estimates

	Draf	t 2022 Cost Estir	nate	Refined Draft 2022 Cost Estimate				
Plant Size (MGD)	5	10	15		5	10	15	
AFY	5,605	11,210	16,815		5,605	11,210	16,815	
SWRO Facility Costs	\$120,506,400	\$153,161,100	\$178,058,800		\$95,206,304	\$125,360,930	\$147,758,712	
	(\$5,000,000)	(\$7,500,000)	<u>(\$10,000,000)</u>					
	(\$20,300,128)	(\$20,300,128)	(\$20,300,128)	—				
Additional Project Costs	\$49,708,700	\$63,178,900	\$73,449,300		\$39,272,475	\$51,711,413	\$60,950,588	
Contractor Markups	\$44,545,300	\$56,616,200	\$65,819,600		\$35,192,893	\$46,339,742	\$54,619,407	
Contingency @ 30% on Subtotal Incl Additional Project Costs	\$64,428,000	\$81,886,800	\$95,198,400		\$50,901,300	\$67,023,600	\$78,998,700	
Non-Construction Costs	\$78,173,000	\$99,356,000	\$115,507,000		\$80,957,128	\$100,170,128	\$114,440,128	
	\$20,300,128	\$20,300,128	\$20,300,128	•				
Total Desalination Facility Cost including Non-Construction Costs	\$357,361,423	\$454,199,000	\$528,033,000		\$302,133,128	\$375,161,128	\$456,767,534	
Annualized Plant Costs	\$18,079,800	\$22,979,100	\$26,714,500		\$15,415,000	\$19,140,000	\$22,290,000	
O&M Costs	\$14,998,700	\$25,265,300	\$35,076,200		\$12,930,100	\$21,567,770	\$29,868,600	
Reduction in SWRO and other' category O&M costs						(\$3,697,500)	(\$5,207,600)	
Total Annualized Costs	\$33,078,500	\$48,244,400	\$61,790,700		\$28,378,100	\$40,707,800	\$52,158,600	
Water Production Costs, \$/AF	\$5,900	\$4,300	\$3,700		\$5,100	\$3,600	\$3,100	

Basis of Design for Option 3 Cost Estimate

- Two major infrastructure components
 - 20-mgd highly brackish desalination facility
 - Based on results of '08-'09 pilot study at Mallard Slough and subsequent desalination plant design
 - Updated cost estimate using design information published in 2010
 - Permanent facility similar in design approach for Option 1
 - Raw water and treated water conveyance costs based on 2021 MMWD intertie for emergency pipeline
- Includes \$/AF costs for:
 - Use of Mallard Slough pump station and CCWD water fees
 - Wheeling of water through aqueduct and intertie

Options 2 & 3 Cost Refinements

- Option 2- Containerized Desalination Facility
 - Re-allocation of treated water conveyance costs (as shown for Option 1)
 - Reduces capital/total annualized costs and cost per acre foot
- Option 3- Bay Area Regional Desalination Facility (BARDF)
 - Re-allocation of treated water conveyance costs (as shown for Option 1)
 - Reduction in 'other' category O&M costs (as shown for Option 1)
 - Reduces capital/O&M/total annualized costs and cost per acre foot

Desalination Options – Refined Draft Cost Estimate Summary

	Option 1A:		Option 1B:		Option 1C:		Ο	ption 2:	Option 3:		Option 4:
	Marin Regional		Marin Regional Desal		Marin Regional Desal		Containerized Desal		Bay Area Desal		Petaluma
Alternative	Desal Fa	cility-5 mgd	Facilit	y-10 mgd	Facility	y-15 mgd	Facili	ty-5.4 mgd	Facil	ity-5 mgd	Brackish Desal
Capital Cost		5302,133,000	\$	375,161,000		\$436,903,000	\$	113,444,000	\$2	262,297,000	
Annual O&M Cost		\$12,963,000		\$21,568,000		\$29,869,000	\$	9,369,000	\$	5,887,000	
Total Annualized Cost	\$	28,378,000	\$	40,708,000	\$	52,159,000	\$	34,140,000	\$	19,269,000	In Prograss
Yield, AFY		5,600		11,200		16,800		6,000		5,600	III FIOgless
Cost per AFY	\$	5,100	\$	3,600	\$	3,100	\$	5,700	\$	3,900	
Total annualized cost based on 30 years for Options 1 and 3, and 5-years for Option 2											

Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. **Typical expected accuracy range for this class estimate (Class 5) is –20 to –50 percent on the low side and +30 to +100 percent on the high side.**

Comparison with Other CA Desal Facilities

- Antioch
- Santa Barbara
- Doheny

Antioch Brackish Desalination Plant

- In construction
- Advertised Capital Cost is \$110M for 6 mgd production (no details on costs); construction cost let in 2020 (start of COVID); doesn't reflect market cost volatility
- Plant treats variable salinity water (between fresh and ~10,000 mg/L; average ~7,200 mg/L)
- This compared to 30,000 mg/L for Bay water (Option 1)
- Higher TDS increases cost of treatment. RO recovery is 82% for Antioch versus 50% for MMWD.
- For 5-mgd MMWD (Option 1) facility:
 - Intake/pump station and brine pump station/pipeline are 4x larger
 - Pretreatment system is 40% larger; Antioch plant doesn't include pretreatment- uses existing WTP
 - RO system requires 50% more membrane elements and larger skids; uses more expensive, highly corrosion-resistant materials operating at higher pressure
 - Process building is significantly larger
 - Energy consumption of MF/UF and RO system are significantly higher
- Capital, O&M and cost of water between Antioch and Marin Regional Desalination facilities are not comparable

Santa Barbara Desalination Plant

- Operational
- \$72M capital cost for 2.8 mgd
- Plant treats seawater with slightly higher TDS than Bay water (34 vs 30 g/L); minimal impact on cost of wetted infrastructure
- Plant leverages existing site, intake (with new screen), outfall and distribution system connection from original desalination plant (which cost \$34M)

- Plant infrastructure is less reliable and very different than that proposed for Marin Regional Desalination Plant
 - Equipment fabricated offsite (at lower cost) and shipped to site; minimal site work
 - No process building; all equipment outdoors; trailer used for Ops building
 - Much cheaper pretreatment system (pressure media filters versus micro-/ultrafiltration)
 - MMWD pretreatment system ensures plant can handle algal bloom in Bay
 - Water cost for Santa Barbara and Marin Regional Desalination facilities is not comparable

Doheny Desalination Plant

- In Planning
- \$119M capital cost for 5 mgd
- Plant treats seawater with slightly higher TDS than Bay water (34 vs 30 g/L); minimal impact on cost of wetted infrastructure
- Design differences produce different costs
 - Slant well has higher costs than open intake
 - Pressure media filtration has lower CAPEX and OPEX cost compared to membrane filtration
 - Calcite filters have lower post-treatment costs compared to dry lime
- Doheny cost estimate developed in 2019
- Cost estimate doesn't account for:
 - Project development costs (e.g., permitting, WQ testing, etc)
 - Impact of COVID, escalation, market volatility

Status and Next Steps

Work in Progress

- Water management alternatives, costs, and other evaluation criteria being further progressed
- Integration of water management alternatives into decision support model is <u>necessary</u> to evaluate yield of supplies when integrated into system
- Structure for forecast-based decision-making on integrating and optimizing supplies
- Detailed evaluation criteria

Strategic Water Supply Assessment: Schedule

- July 12 (5pm-7pm) Review Desalination and Recycled Water
- July 19 (7:30pm 9:30pm) Local Supply Enhancement, Sonoma options and Review Interties
- July 28 (5pm-7pm) Public Workshop #3
- August 9 (5pm-7pm) Evaluation of Water Management Alternatives
- August 23 (5pm-7pm) Evaluation of Water management alternatives
- August TBD Public Workshop

Option 1 Conveyance Routing Change

2022 routing

The discharge piping from Pelican runs to Bellam, thence to Andersen, connecting at two points in the Forbes zone, before a final tie-in to the Ross zone in Sir Francis Drake.