

Strategic Water Supply Assessment

PUBLIC WORKSHOP #3

July 28, 2022

Workshop Agenda: Strategic Water Supply Assessment

- Project overview
- Scenario Review
- Water Management Alternatives
- Next Steps/Schedule
- **Q&A**

Strategic Water Supply Assessment: Glossary

- AF Acre foot (1 acre foot= 325,850 gallons)
- AFY Acre feet per year
- TAF Thousand acre feet
- AR Atmospheric River
- GPCD Gallons per capita per day
- GPHD Gallons per household per day
- GW Ground Water
- DPR Direct Potable Re-use

- IPR Indirect Potable Re-use
- WTP Water Treatment Plant
- AWTP Advanced Water Treatment Plant
- WWTP Waste Water Treatment Plant
- PS Pump Station
- Synthetic Drought hypothetical drought or artificially created
- Trace line of reservoir storage on a chart
- Paleoclimate Climate prior to modern observations

Project and Process Overview

Project Overview

The Assessment will address the following questions:

- 1. What is the current risk to MMWD's water delivery reliability under recent and projected future droughts?
- 2. How much additional water supply is needed under different future hydrologic drought and demand scenarios?
- 3. What are the range of water supply alternatives that could increase resiliency of MMWD's system? And what are their strengths and weaknesses?
- 4. What recommendations can be developed to support MMWD's near-term investment in drought resiliency?

Strategic Water Supply Assessment: Key Project Scope Elements

Recommendations Understanding Current Risks & Establishing Goals Identifying & Evaluating Alternatives & Path Forward Confirm Develop Develop Conduct Develop Prepare **Evaluation** of Water Supply Decision Water Supply Water Supply Roadmap and Demand Strategy and Water Supply Support **Alternatives** and Report **Alternatives** Goals Model **Scenarios**

Supply and Demand Scenarios

Water Supply and Demand Scenarios

- Recognizing that future is uncertain
 - Climate change
 - Drought variability
 - Demands
 - Policies and regulations
- Seeking robust solutions
- Scenarios allow us to explore plausible future conditions and identify promising solutions
 - Historical droughts
 - Climate projections
 - Paleo reconstructions
 - Stress tests

Scenarios are alternative views of how the future might unfold. Scenarios are not predictions or forecasts of the future

Strategic Water Supply Assessment: Scenarios

Draft Scenarios:

- Represent plausible range of future conditions
- Utilize demand, existing supply and hydrologic conditions to determine how the water system responds

Scenario 1 – Current Trends
Scenario 2 – Conservation
Scenario 3 – Short and Severe Drought
Scenario 4 – Beyond Drought of Record
Scenario 5 – Abrupt Disruptions

Draft Scenario Assumptions

Scenario	Hydroclimate Assumptions	Demand Assumptions	Operational Assumptions	
Scenario 1 – Current Trends	Historical observed	Passive-level savings	Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation	
Scenario 2 – Conservation	Historical observed	Passive <u>plus</u> programmatic savings	Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation	
Scenario 3 – Short and Severe Drought	Severe 4-Yr drought (2020, 2021, 1976, 1977)	Passive <u>plus</u> programmatic savings	Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation	
Scenario 4 – Beyond Drought of Record (A, B & C different Global Climate Models used)	Long-range, extended 6- or 7-Yr drought (based on climate change projections)	Passive <u>plus</u> programmatic savings	Current operations; local supply preference; supplemental water with Kastania Pump Station rehabilitation	
Scenario 5 – Abrupt Disruptions	Severe 4-Yr drought (2020, 2021, 1976, 1977); high wildfire likelihood	Passive <u>plus</u> programmatic savings	Operational disruptions due to post-wildfire sediment loads; Treatments plants at reduced capacity (Bon Tempe offline & San Geronimo @ 50% operating capacity for 6 months)	

Scenario 3 Assumptions

Total MMWD Reservoir Storage – Scenario 3

S1 test Model • Measured Historical

Draft Potential Supply Deficit

Draft Scenario Maximum Water Supply Deficits

Storage Threshold (30 TAF)

Summary of DRAFT Scenarios

- Scenario findings
 - Scenario 1 drought results in the highest short-term deficit
 - Scenario 2 conservation savings reduces the deficit
 - Scenario 3 with four-year drought results in the highest overall deficit
 - Scenario 4 with extended droughts creates a challenge of *persistence*
 - Scenario 5 with reduced treatment capacity results in *diversification* challenge
- Scenarios and modeling to be refined

Water Management Alternatives

Water Management Alternatives Considered

- Baseline Existing water supply system
- Desalination
- Recycled Water
- Local Surface Storage
- Sonoma-Marin Partnerships
- Water Purchases with Conveyance through Bay Interties
- Conservation

Desalination

- 1. Marin North Bay Desalination Facility
- 2. Containerized/Leased Desalination Facility
- 3. Bay Area Regional Desalination Facility
- 4. Petaluma Brackish Regional Desalination

Desalination – Considerations

- Ballot Measure District must seek approval of the voters to finance and construct
- Permitting Update of CEQA and Environmental Impact Report
- Timeline to complete project
- Operations and Maintenance strategy
- Energy
- Cost

Desalination Options – Refined Draft Cost Estimate Summary

	Opt	ion 1A:	Opt	ion 1B:	Opti	ion 1C:	Ο	ption 2:	Ор	otion 3:	Option 4:
	Marir	Regional	Marin Re	gional Desal	Marin Re	gional Desal	Contair	nerized Desal	Bay A	rea Desal	Petaluma
Alternative	Desal Fa	cility-5 mgd	Facilit	y-10 mgd	Facility	/-15 mgd	Facili	ty-5.4 mgd	Facili	ity-5 mgd	Brackish Desal
Capital Cost	¢	302,133,000	\$	375,161,000	¢	\$436,903,000	\$	113,444,000	\$2	62,297,000	
Annual O&M Cost		\$12,963,000		\$21,568,000		\$29,869,000	\$	9,369,000	\$	5,887,000	
Total Annualized Cost	\$	28,378,000	\$	40,708,000	\$	52,159,000	\$	34,140,000	\$	19,269,000	In Progress
Yield, AFY		5,600		11,200		16,800		6,000		5,600	III FIOgless
Cost per AFY	\$	5,100	\$	3,600	\$	3,100	\$	5,700	\$	3,900	
Total annualized cost based on 30 years for Options 1 and 3, and 5-years for Option 2											

Costs for desalination are being refined

Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. **Typical expected accuracy range for this class estimate (Class 5) is –20 to –50 percent on the low side and +30 to +100 percent on the high side.**

Water Reuse

- Recycled Water expansion of nonpotable reuse system (LGVSD-Peacock Gap; CMSA-San Quentin)
- 2. Indirect Potable Reuse (IPR) Advanced treatment, discharge to Kent Lake
- Environmental releases Advanced treatment, discharge to Kent Lake release (IPR)
- Direct Potable reuse (DPR) Advanced treatment for DPR, CMSA to distribution system, or discharge to Bon Tempe Lake for Bon Tempe WTP intake

Water Reuse – Considerations

- There are no operational surface water augmentation Indirect Potable Reuse or Direct Potable Reuse plants in California
- Trace contaminants present in wastewater are detectable in treated water
- Permitting discharge of RO brine for IPR/DPR options
- Public Acceptance education of public will be key to ensuring acceptance
- Energy
- Cost

Water Reuse Options Cost Estimate Summary

Alternative	Opt Non-Pota 0.1	ion 1A: able CMSA – 4 mgd	Opti Non-Pota Gap 0	ion 1B: ble Peacock .15 mgd	Or Regiona Stream	otion 2: Il IPR (In lieu flow 7 mgd)	CMS/ Water	Option 4A: A DPR (Treated Augmentation 4 mgd)	Option DPR (I Augmen	4B: Regional Raw Water tation 7 mgd)
Capital Cost	\$	10,026,000	\$	14,000,000	\$	451,965,000	\$	124,395,000	\$	433,864,000
Annual O&M Cost	\$	136,000	\$	166,000	\$	9,964,000	\$	8,981,000	\$	16,009,000
Total Annualized Cost	\$	648,000	\$	880,000	\$	33,023,000	\$	15,328,000	\$	38,144,000
Yield, AFY		154		166		7840		4480		7840
Cost per AF		\$-		\$-		\$-		\$-		\$-

Costs for Reuse options are being refined

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side. (Updated)

Water Purchases with Conveyance through Bay Interties

- EBMUD Intertie (Sac Valley purchases)
- CCWD Intertie (Sac Valley purchases)
- North Bay Aqueduct Intertie (Sac Valley purchases)
- SFPUC Intertie (Golden Gate Bridge)

Water Purchases - Considerations

- EBMUD wheeling principles limited to emergency operation, and other constraints
- Develop conveyance through multiple jurisdictions
- Alternative to connect to CCWD, rather than EBMUD increases cost
- Significant permitting requirements
- Yield uncertainty in drought
- Cost

Water Purchases through Bay Intertie Options Cost Estimate Summary

Alternative	EBMUD Intertie	CCWD Intertie	North Bay Aqueduct Intertie Option 1*	North Bay Aqueduct Intertie Option 2*	SFPUC Intertie (In progress)
Capital Cost	\$111,350,000	\$280,434,266	\$225,443,094	\$289,416,219	
Annual O&M Cost	\$14,202,000	\$11,457,000	\$6,365,000	\$6,365,000	
Total Annualized Cost	\$19,883,000	\$25,765,000	\$17,867,000	\$21,131,000	
Yield, AFY	TBD	TBD	TBD	TBD	
Cost per AFY	\$-	\$-	\$-	\$-	

Yield for intertie options are being developed *Treatment cost not included

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Local Storage Augmentation

- 1. Raising Soulajule Dam
- 2. Dredging Nicasio Lake
- 3. Adjustable Spillways

Local Storage Augmentation - Considerations

- Dam adequacy and structural integrity –
- New inundated areas land ownership and impacts to land use
- Permitting:
 - Division of Safety of Dams
 - Water rights
- Environmental

Local Storage Options Cost Estimate Summary

	Option 1:	Option 2:	Option 3:
Alternative	Raising Soulaiule	Dredging Nicasio	Movable Spillway Gates
Capital Cost	\$98,400,000	\$132,000,000	\$80,000,000
Annual O&M Cost	\$3,320,000	\$0	\$1,000,000
Total Annualized Cost	\$13,350,000	\$19,468,000	\$6,393,000
Yield, AFY	TBD	TBD	TBD
Cost per AFY	\$2,300	\$64,900	\$-

Yield for local storage options is being refined

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Sonoma-Marin Partnerships

- 1. Maximize Use of Sonoma Water in Winter
- 2. Develop Dedicated Conveyance to Soulajule or Nicasio Reservoirs
- 3. Groundwater Well Rehabilitation
- 4. Regional Groundwater Bank

Sonoma Marin Partnerships - Considerations

- Groundwater Banking
 - Groundwater Sustainability Agencies (GSAs) developing Plans
 - Alignment with benefits for overlying pumpers
 - Exchange agreements and accounting systems
- Purchase of water and conveyance to reservoirs will likely result in reservoirs spilling some years

Sonoma-Marin Partnership Options Cost Estimate Summary

Alternative	Option 1: Maximize Use of Winter Water	Option 2: Dedicated Conveyance to MMWD Reservoirs	Option 3: Sonoma Water Well Rehabilitation	Option 4: Regional Groundwater Bank
Capital Cost		\$139,000,000	\$7,000,000	\$20,000,000
Annual O&M Cost	\$8,000,000	\$-	\$2,600,000	\$3,900,000
Total Annualized Cost	\$8,000,000	\$20,400,000	\$2,957,000	\$4,920,000
Yield, AFY	5000	8000	TBD	TBD
Cost per AFY	\$1,600	\$3,400	\$-	\$-

Yield for Well rehabilitation and GW Bank are being developed

** Cost estimates should be considered DRAFT. Updates are likely as evaluation continues to progress. Typical expected accuracy range for this class estimate (Class 5) is -20 to -50 percent on the low side and +30 to +100 percent on the high side.

Status and Next Steps

Work in Progress

- Refinement of Water Management Alternatives yield and cost
- Additional review and consideration of Conservation as a water management alternative
- Detailed evaluation criteria

Schedule

- Proposed Upcoming Board Discussion Focus Areas
 - August 2 Conservation as water management alternative
 - September 13 Marin Sonoma Partnerships detailed review & Review of Water Management Alternatives
 - September 27 TBD
 - October 18 TBD
- Public Meetings
 - September/October TBD Public Workshop #4

Attendee Questions & Comments

Instructions for indicating you have a question/comment

If watching from a computer or smart device:

Use the raise hand if feature in Zoom

If listening from a phone:

Dial *9 to let the Zoom host know your hand is raised